Câu hỏi:
12/03/2025 329Quảng cáo
Trả lời:
a) Cách 1: Ta có \(MN \bot AB\) tại \[O\] nên \(\Delta MOB\) vuông tại \[O\], suy ra ba điểm \[M,{\rm{ }}O,{\rm{ }}B\] cùng thuộc đường tròn đường kính \[MB\].
Ta có \(MH \bot CB\) tại \[H\] nên \(\Delta MHB\) vuông tại \[H,\]suy ra ba điểm \[M,{\rm{ }}H,{\rm{ }}B\] cùng thuộc đường tròn đường kính \[MB\].
Do đó bốn điểm \[O;{\rm{ }}M;{\rm{ }}H;{\rm{ }}B\] cùng thuộc đường tròn đường kính \[MB\].
Cách 2: Gọi \[I\] là trung điểm của \[MB\].
Ta có \(MN \bot AB\) tại \[O\] nên \(\Delta MOB\) vuông tại \[O,\] lại có \[OI\] là đường trung tuyến ứng với cạnh huyền \(MB\) nên \(IO = IM = IB = \frac{1}{2}MB.\)Ta có \(MH \bot CB\) tại \[H\] nên \(\Delta MHB\) vuông tại \[H,\] lại có \[HI\] là đường trung tuyến với cạnh huyền \(MB\) nên \(IH = IM = IB = \frac{1}{2}MB.\)
Vậy \(IO = IM = IH = IB\) nên bốn điểm \[O;{\rm{ }}M;{\rm{ }}H;{\rm{ }}B\] cùng thuộc đường tròn tâm \[I,\] đường kính \(MB.\)
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
⦁ Chứng minh \(\widehat {MHO} = \widehat {MNA}\)
Xét đường tròn ngoại tiếp đi qua bốn điểm \[O;{\rm{ }}M;{\rm{ }}H;{\rm{ }}B\] có \(\widehat {MHO} = \widehat {MBO}\) (hai góc nội tiếp cùng chắn cung \[MO).\]
Xét đường tròn tâm \[O\] có: \(\widehat {MBA} = \widehat {MNA}\) (hai góc nội tiếp cùng chắn cung \[MA)\] hay \(\widehat {MBO} = \widehat {MNA}\)
Do đó: \(\widehat {MHO} = \widehat {MNA}.\)
⦁ Chứng minh \(ME \cdot MH = BE \cdot HC\)
Xét đường tròn ngoại tiếp đi qua bốn điểm \[O;{\rm{ }}M;{\rm{ }}H;{\rm{ }}B\] có \(\widehat {BMO} = \widehat {BHO}\) (hai góc nội tiếp cùng chắn cung \[OB)\]
Tam giác \[MBO\] cân tại \[O\] (do \(OM = OB)\) nên \(\widehat {BMO} = \widehat {MBO}\).
Lại có \(\widehat {MHO} = \widehat {MBO}\) (chứng minh trên)
Suy ra \(\widehat {MHO} = \widehat {BHO}\) nên \[HO\] là tia phân giác của \(\widehat {MHB}\) hay \[ME\] là tia phân giác của \(\widehat {MHB}.\)
Xét \(\Delta MHB\) có \[ME\] là tia phân giác của \(\widehat {MHB}\) nên \(\frac{{ME}}{{BE}} = \frac{{MH}}{{BH}}\) (1)
Xét đường tròn \(\left( O \right)\) có \(AB\) là đường kính và \(M \in \left( O \right)\) nên \(\widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn), do đó \(\widehat {CMB} = 90^\circ \) nên \(\widehat {HMC} + \widehat {HMB} = 90^\circ .\)
Mặt khác, \(\Delta MHB\) vuông tại \(H\) nên \(\widehat {HMB} + \widehat {HBM} = 90^\circ \) (tổng hai góc nhọn trong tam giác vuông).
Suy ra \(\widehat {HMC} = \widehat {HBM}.\)
Xét \(\Delta MHC\) và \(\Delta BHM\) có: \(\widehat {HMC} = \widehat {BHM} = 90^\circ \) và \(\widehat {HMC} = \widehat {HBM}\)
Do đó (g.g), suy ra \(\frac{{MH}}{{BH}} = \frac{{HC}}{{HM}}\) (2)
Từ (1) và (2) suy ra \(\frac{{ME}}{{BE}} = \frac{{HC}}{{HM}}\,\,\left( { = \frac{{MH}}{{BH}}} \right)\) hay \(ME \cdot MH = BE \cdot HC\).
Câu 3:
Lời giải của GV VietJack
⦁ Tam giác \[MHC\] vuông tại \[C\] nên ba điểm \[M,{\rm{ }}H,{\rm{ }}C\] nội tiếp đường tròn đường kính \[MC.\]
Mà \[P\] thuộc đường tròn đó nên \(\widehat {MPC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Mặt khác, \[P\] thuộc đường tròn tâm \[O,\] đường kính \[MN\] nên \(\widehat {MPN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Vậy \(\widehat {MPN} + \widehat {MPC} = 90^\circ + 90^\circ = 180^\circ \) nên \[C,{\rm{ }}P,{\rm{ }}N\] thẳng hàng. (3)
⦁ Xét \(\Delta MHC\) và \(\Delta BMC\) có:
\(\widehat {MHC} = \widehat {BMC} = 90^\circ \) và \(\widehat {MCB}\) là góc chung
Do đó (g.g), suy ra \(\frac{{MH}}{{BM}} = \frac{{HC}}{{MC}}\) hay \(\frac{{HC}}{{MH}} = \frac{{MC}}{{BM}}\).
Tam giác \[BMN\]có \[BO\] là đường cao đồng thời là đường trung tuyến nên \[\Delta BMN\] cân tại \[B\], suy ra \(BM = BN.\)
Do đó từ \(\frac{{HC}}{{MH}} = \frac{{MC}}{{BM}}\) ta có \(\frac{{HC}}{{MH}} = \frac{{MC}}{{BN}}\)
Theo câu b ta có: \(\frac{{ME}}{{BE}} = \frac{{HC}}{{HM}}\) nên \(\frac{{ME}}{{BE}} = \frac{{MC}}{{BN}}\).
Xét đường tròn \(\left( O \right)\) đường kính \(MN\) có \(B \in \left( O \right)\) nên \(\widehat {NBM} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) hay \(\widehat {NBE} = 90^\circ .\)
Xét \(\Delta MCE\) và \(\Delta BNE\) có: \(\widehat {CME} = \widehat {NBE} = 90^\circ \) và \(\frac{{ME}}{{BE}} = \frac{{MC}}{{BN}}\)
Do đó (g.g), suy ra \(\widehat {MEC} = \widehat {BEN}\) (hai góc tương ứng).
Ta có: \(\widehat {BEN} + \widehat {CEB} = \widehat {MEC} + \widehat {CEB} = \widehat {MEB} = 180^\circ \) nên ba điểm \[C,{\rm{ }}E,{\rm{ }}N\] thẳng hàng. (4)
Từ (3) và (4) ta có bốn điểm \[C;{\rm{ }}P;{\rm{ }}E;{\rm{ }}N\] thẳng hàng hay \[C;{\rm{ }}P;{\rm{ }}E\] thẳng hàng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tần số ghép nhóm và tần số tương đối ghép nhóm của nhóm \(\left[ {40;\,\,42} \right).\)
Câu 4:
Câu 5:
(0,5 điểm) Trong buổi thăm quan dã ngoại, mỗi lớp khối 9 được chuẩn bị một tấm bạt hình chữ nhật \(ABCD\) cùng loại, có chiều dài 10 m và chiều rộng 6 m; với \(M,\,\,N\) lần lượt là trung điểm của \[AD,\,\,BC\] (hình 1).
Mỗi lớp sử dụng tấm bạt như trên để dựng thành chiếc lều có dạng hình lăng trụ đứng tam giác (hình 2); hai đáy hình lăng trụ là hai tam giác cân: tam giác \(AMD\) và tam giác \(BNC,\) với độ dài cạnh đáy của hai tam giác cân này là \(x{\rm{\;(m)}}{\rm{.}}\) (Tấm bạt chỉ sử dụng để dựng thành hai mái lều, không trải thành đáy lều). Tìm \(x\) để thể tích không gian trong lều là lớn nhất.
Câu 6:
2) Hình vẽ dưới đây mô tả một đĩa tròn bằng bìa cứng được chia làm 12 phần bằng nhau và ghi các số \(1,\,\,2,\,\,3,\,\, \ldots ,\,\,11,\,\,12;\) chiếc kim được gắn cố định vào trục quay ở tâm của đĩa.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận