Câu 11-12: (1,0 điểm) Thép không gỉ Ferritic là họ thép hợp kim có chứa từ 12 đến 27 phần trăm crôm. Một nhà máy luyện thép hiện có sẵn một lượng hợp kim thép chứa \[10\% \] crôm và một lượng hợp kim thép chứa \[30\% \] crôm. Giả sử trong quá trình luyện thép các nguyên liệu không bị hao hụt.
1) Tính khối lượng hợp kim thép mỗi loại từ hai loại thép trên dùng để luyện được 500 tấn thép chứa \[16\% \] crôm.
Câu 11-12: (1,0 điểm) Thép không gỉ Ferritic là họ thép hợp kim có chứa từ 12 đến 27 phần trăm crôm. Một nhà máy luyện thép hiện có sẵn một lượng hợp kim thép chứa \[10\% \] crôm và một lượng hợp kim thép chứa \[30\% \] crôm. Giả sử trong quá trình luyện thép các nguyên liệu không bị hao hụt.
1) Tính khối lượng hợp kim thép mỗi loại từ hai loại thép trên dùng để luyện được 500 tấn thép chứa \[16\% \] crôm.
Quảng cáo
Trả lời:
Gọi \[a\]làsốtấnhợpkimthépchứa\[10\% \]cromcầndùng\[\left( {a > 0} \right).\]
Khi đó, \[500--a\] là số tấn hợp kim thép 30% cần dùng.
Ta có \[a \cdot 10\% + \left( {500--a} \right) \cdot 30\% = 500 \cdot 16\% \]
\[10a + \left( {500--a} \right) \cdot 30 = 500 \cdot 16\]
\[a + 1\,\,500--3a = 800\]
\[2a = 700\]
\[a = 350\](TMĐK)
Vậysốhợpkimthépchứa \[10\% \]cromcầndùnglà350tấn,sốhợpkimthépchứa\[30\% \]cầndùng là 150 tấn.
Câu hỏi cùng đoạn
Câu 2:
2) Nhà máy dự định luyện ra loại thép không gỉ Ferritic từ 100 tấn thép chứa \[10\% \] crôm và \[x\] tấn thép chứa \[30\% \] crôm. Hỏi \[x\] nằm trong khoảng nào?
2) Nhà máy dự định luyện ra loại thép không gỉ Ferritic từ 100 tấn thép chứa \[10\% \] crôm và \[x\] tấn thép chứa \[30\% \] crôm. Hỏi \[x\] nằm trong khoảng nào?
Lời giải của GV VietJack
Số crôm từ 100 tấn thép chứa \[10\% \] crôm là \[10\% \cdot 100 = 10\] (tấn)
Số crôm từ x tấn thép chứa 30% crôm là \[0,3x\] (tấn)
Tổng số tấn thép là \[100 + x\] (tấn)
Phần trăm crôm có trong tổng số tấn thép nhà máy dự định luyện ra là: \(\frac{{10 + 0,3x}}{{100 + x}} \cdot 100\,\,\left( \% \right)\)
Theo đầu bài, thép không gỉ Ferritic có chứa từ 12 đến 27 phần trăm crôm, ta có:
Xét |
Xét |
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[\frac{{100}}{9} \le x \le \frac{{1\,\,700}}{3}.\]
Vậy \[x\] nằm trong khoảng \[\frac{{100}}{9}\] đến \[\frac{{1\,\,700}}{3}.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Chiều rộng của khu vườn hình chữ nhật sau khi mở rộng là:
\[30 + x + x = 30 + 2x\,\,\left( {\rm{m}} \right)\]
Chiều dài của khu vườn hình chữ nhật sau khi mở rộng là:
\[70 + x + x = 70 + 2x\,\,\left( {\rm{m}} \right)\]
Diện tích của khu vườn hình chữ nhật sau khi mở rộng là:
\[\left( {30 + 2x} \right)\left( {70 + 2x} \right)\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]
Vậy biểu thức \[S\] biểu diễn theo \[x\] là \[S = \left( {30 + 2x} \right)\left( {70 + 2x} \right)\].
Lời giải
1) Phương trình \[2{x^2} - 5x + 1 = 0\] có \[a = 2\,;\,\,b = - 5\,;\,\,c = 1\] nên ta có:
\[\Delta \; = \;{\left( { - 5} \right)^2} - \;4 \cdot 2 \cdot 1 = \;25 - \;8 = \;17 > \;0\] nên phương trình có hai nghiệm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.