Câu hỏi:

12/03/2025 982 Lưu

Số nghiệm của phương trình \[\left( {x - 5} \right)\left( {{x^2} + 1} \right) = 0\]          

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Giải phương trình:

\[\left( {x - 5} \right)\left( {{x^2} + 1} \right) = 0\]

\(x - 5 = 0\) hoặc \({x^2} + 1 = 0\) (vô nghiệm do \({x^2} + 1 > 0\) với mọi \(x)\)

\(x = 5.\)

Như vậy, phương trình đã cho có 1 nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Không gian mẫu là: \(\Omega = \){(đỏ, đỏ); (đỏ, vàng); (đỏ, xanh); (vàng, xanh)}.

Không gian mẫu có 4 phần tử.

Chỉ có 1 kết quả thuận lợi cho biến cố “Hai viên bi lấy ra cùng màu” là (đỏ, đỏ).

Vậy xác suất của biến cố “Hai viên bi lấy ra cùng màu” là \(\frac{1}{4}.\)

Lời giải

Với \[x \ge 0,\,\,x \ne 1,\] ta có:

\[P = \frac{2}{{\sqrt x - 1}} - \frac{{\sqrt x + 5}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\]

\[ = \frac{{2\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} - \frac{{\sqrt x + 5}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\]

\[ = \frac{{2\sqrt x + 4 - \sqrt x - 5}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\]

\[ = \frac{{\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} = \frac{1}{{\sqrt x + 2}}.\]

Vậy với \[x \ge 0,\,\,x \ne 1\] thì \[P = \frac{1}{{\sqrt x + 2}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP