Câu hỏi:

12/03/2025 867

(0,5 điểm) Tại cùng một thời điểm, có hai người đang ở hai vị trí \[A\]\[B\] cách nhau \[1000\] mét. Người thứ nhất ở vị trí \[B\] và đi về phía điểm \[A\] với vận tốc \[2{\rm{\;m/s}}\] và người thứ hai ở vị trí \[A\] đi về phía điểm \[C\] với vận tốc \[1,5{\rm{\;m/s}}.\] Biết rằng \[AB\]\[AC\] vuông góc với nhau. Hãy cho biết sau bao nhiêu giây thì khoảng cách giữa hai người này nhỏ nhất?
Hãy cho biết sau bao nhiêu giây thì khoảng cách giữa hai người này nhỏ nhất? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\) (giây) là thời gian di chuyển của mỗi người \(\left( {0 < x < 500} \right).\)

Quãng đường người thứ nhất đi được là: \(BE = 2x{\rm{\;(m)}}{\rm{.}}\)

Quãng đường người thứ hai đi được là: \(AD = 1,5x{\rm{\;(m)}}{\rm{.}}\)

Ta có \(AE = AB - BE = 1\,\,000 - 2x{\rm{\;(m)}}{\rm{.}}\)

Xét \(\Delta ADE\) vuông tại \(A,\) theo định lí Pythagore, ta có:

\(D{E^2} = A{D^2} + A{E^2} = {\left( {1,5x} \right)^2} + {\left( {1\,\,000 - 2x} \right)^2} = 2,25{x^2} + 4{x^2} - 4\,\,000x + 1\,\,000\,\,000\)

 \( = 6,25{x^2} - 4\,\,000x + 1\,\,000\,\,000 = 6,25\left( {{x^2} - 640x + 102\,\,400} \right) + 360\,\,000\)

 \( = 6,25{\left( {x - 320} \right)^2} + 360\,\,000.\)

Ta có: \({\left( {x - 320} \right)^2} \ge 0\) với mọi \(x\) nên \(6,25{\left( {x - 320} \right)^2} + 360\,\,000 \ge 360\,\,000.\)

Do đó \(D{E^2} \ge 360\,\,000\) nên \(DE \ge 600\)

Dấu “=” xảy ra khi \[{\left( {x - 320} \right)^2} = 0\] hay \(x = 320.\)

Vậy sau \[320\] giây thì khoảng cách giữa hai người là nhỏ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Không gian mẫu là: \(\Omega = \){(đỏ, đỏ); (đỏ, vàng); (đỏ, xanh); (vàng, xanh)}.

Không gian mẫu có 4 phần tử.

Chỉ có 1 kết quả thuận lợi cho biến cố “Hai viên bi lấy ra cùng màu” là (đỏ, đỏ).

Vậy xác suất của biến cố “Hai viên bi lấy ra cùng màu” là \(\frac{1}{4}.\)

Lời giải

1) Chứng minh tứ giác \[BCEF\] nội tiếp. (ảnh 1)

Do \(\Delta BCE\) vuông tại \(E\) nên đường tròn ngoại tiếp tam giác này có tâm là trung điểm của \(BC.\)

Do \(\Delta BCF\) vuông tại \(F\) nên đường tròn ngoại tiếp tam giác này có tâm là trung điểm của \(BC.\)

Như vậy đường tròn đường kính \(BC\) đi qua các điểm \(B,\,\,C,\,\,E,\,\,F.\)

Vậy tứ giác \[BCEF\] nội tiếp đường tròn đường kính \[BC.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP