Câu hỏi:

12/03/2025 194

Câu 14-16: (3,0 điểm) Cho đường tròn \(\left( O \right)\) đường kính \(AB = 2R\). Dây \(MN\) vuông góc với \(AB\) tại \(I,\) với \(IA < IB.\) Trên đoạn \(MI\) lấy điểm \(E\) \((E\) khác \(M\)\(I).\) Tia \[AE\] cắt đường tròn \(\left( O \right)\) tại điểm thứ hai là \(K.\)

1) Chứng minh rằng tứ giác \(IEKB\) nội tiếp một đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Chứng minh rằng tứ giác IEKB nội tiếp một đường tròn. (ảnh 1)

Gọi \(C\) là trung điểm của \(EB.\)

Ta có \(\widehat {AKB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) suy ra \(\Delta BKE\) vuông tại \(K,\) lại có \(KC\) là đường trung tuyến ứng với cạnh huyền \(EB\) nên \(CB = CK = CE = \frac{{EB}}{2}.\) (1)

\(\widehat {BIE} = 90^\circ \) suy ra \(\Delta BIE\) vuông tại \(I.\) Xét \(\Delta BIE\)\(IC\) là đường trung tuyến suy ra \(CB = CE = CI = \frac{{EB}}{2}.\) (2)

Từ (1) và (2) suy ra 4 điểm \(I,\,\,E,\,\,K,\,\,B\) cùng thuộc đường tròn \(\left( {C;\,\,\frac{{EB}}{2}} \right).\)

Vậy tứ giác \(IEKB\) nội tiếp đường tròn đường kính \[EB.\]

Câu hỏi cùng đoạn

Câu 2:

2) Chứng minh rằng tam giác \(AME\) đồng dạng với tam giác \(AKM\)\(AE \cdot AK + BI \cdot BA = 4{R^2}.\)

Xem lời giải

verified Lời giải của GV VietJack

Ta có \(\Delta OMI\)\(\Delta ONI\) có:

\(\widehat {OIM} = \widehat {OIN} = 90^\circ ;\) \(OM = ON\)\(OI\) là cạnh chung

Do đó \(\Delta OMI = \Delta ONI\) (cạnh huyền – cạnh góc vuông).

Suy ra \(\widehat {IOM} = \widehat {ION}\) (hai góc tương ứng) hay \(\widehat {AOM} = \widehat {AON}\)

Nên hay

Do đó  

Xét \(\Delta AME\)\(\Delta AKM\) có: \(\widehat {MAK}\) là góc chung và \(\widehat {AME} = \widehat {AKM}\)

Do đó (g.g).

Xét \(\Delta AIE\)\(\Delta AKB\) có: \(\widehat {AIE} = \widehat {AKB} = 90^\circ \)\(\widehat {BAK}\) là góc chung.

Do đó  (g.g).

Suy ra \(\frac{{AI}}{{AK}} = \frac{{AE}}{{AB}}\) hay \(AI \cdot AB = AE \cdot AK.\)

Từ đề bài, ta có

\(AE \cdot AK + BI \cdot BA = AI \cdot AB + BI \cdot BA = AB\left( {AI + BI} \right) = A{B^2} = {\left( {2R} \right)^2} = 4{R^2}.\)

Câu 3:

3) Tính độ dài đoạn thẳng \(OI\) theo \(R\) khi chu vi tam giác \(MIO\) đạt giá trị lớn nhất.

Xem lời giải

verified Lời giải của GV VietJack

Chu vi tam giác \(MIO\)\(MI + IO + OM = MI + IO + R\) lớn nhất khi \(IM + IO\) lớn nhất.

Xét \(\Delta MIO\) vuông tại \(I,\) theo định lý Pythagore ta có: \(O{M^2} = {R^2} = O{I^2} + M{I^2}.\)

\(2\left( {O{I^2} + M{I^2}} \right) - {\left( {OI + MI} \right)^2} = {\left( {OI - MI} \right)^2} \ge 0.\)

Suy ra \({\left( {OI + MI} \right)^2} \le 2\left( {O{I^2} + M{I^2}} \right) = 2{R^2}\)

Do đó \(OI + MI \le \sqrt 2 R\) nên \(OI + MI + R \le \left( {\sqrt 2 + 1} \right)R.\)

Dấu “=” xảy ra khi \(OI = MI = \frac{R}{{\sqrt 2 }} = \frac{{R\sqrt 2 }}{2}\).

Vậy chu vi tam giác \(MIO\) lớn nhất bằng \(R + R\sqrt 2 \) khi \(I\) thuộc đoạn thẳng \(AO\) và cách \(O\) một khoảng \(OI = \frac{{R\sqrt 2 }}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

I. PHẦN TRẮC NGHIỆM (2,0 điểm)

Điều kiện xác định của biểu thức \(\sqrt {x - 2025} \)

Lời giải

Đáp án đúng là: D

Điều kiện xác định của biểu thức \(\sqrt {x - 2025} \)\(x - 2025 \ge 0,\) hay \(x \ge 2\,\,025.\)

Câu 2

Thống kê điểm kiểm tra giữa kì môn Toán của lớp 9A, ta thu được bảng số liệu sau:

Điểm

4

5

6

7

8

9

10

Số học sinh

2

3

4

8

13

8

7

Theo bảng số liệu trên, lớp 9A có bao nhiêu bạn đạt điểm 10?          

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Lớp 9A có 7 bạn học sinh đạt được điểm 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay