Câu hỏi:
12/03/2025 166Câu 12-13: (1,5 điểm) Cho tam giác \(ABC\,\,\left( {AB < AC} \right)\) có ba góc nhọn; các đường cao \(AD,\,\,BK,\,\,CE.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Vì \[\Delta CBE\] vuông tại \(E\) nên đường tròn ngoại tiếp tam giác này là đường tròn đường kính \(BC.\) Do đó ba điểm \(B,\,\,C,\,\,E\) cùng nằm trên đường tròn đường kính \(BC.\)
Tương tự, \(\Delta BCK\) vuông tại \(K\) nên ba điểm \(B,\,\,C,\,\,K\) cùng nằm trên đường tròn đường kính \(BC.\)Như vậy, bốn điểm \(B,\,\,C,\,\,K,\,\,E\) cùng thuộc đường tròn đường kính \(BC.\)
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Vì bốn điểm \(B,\,\,C,\,\,K,\,\,E\) cùng thuộc đường tròn đường kính \(BC\) nên tứ giác \(BCKE\) nội tiếp đường tròn. Suy ra \(\widehat {KBC} = \widehat {KEC}\) (hai góc nội tiếp cùng chắn cung \(KC).\) (1)
Gọi \(H\) là giao điểm của ba đường cao \(AD,\,\,BK,\,\,CE\) của \(\Delta ABC.\)
Chứng minh tương tự, ta có tứ giác \(BDHE\) là tứ giác nội tiếp.
Do đó \(\widehat {HBD} = \widehat {HED}\) (hai góc nội tiếp cùng chắn cung \(HD)\) hay \(\widehat {KBC} = \widehat {CED}.\) (2)
Từ (1) và (2) suy ra \(\widehat {KEC} = \widehat {CED}.\)
Lại có \(\widehat {KEC} + \widehat {KEA} = 90^\circ \) và \(\widehat {CED} + \widehat {DEB} = 90^\circ \)
Suy ra \[\widehat {KEA} = \widehat {DEB}.\]
Mặt khác, \[\widehat {KEA} = \widehat {BEM}\] (đối đỉnh) nên \[\widehat {BEM} = \widehat {DEB}.\]
Do đó \(EB\) là tia phân giác của góc \(\widehat {MED}.\)
Xét \[\Delta MED\] có \(EB\) là tia phân giác của góc \(\widehat {MED}\) nên \(\frac{{EM}}{{ED}} = \frac{{BM}}{{BD}}\) (tính chất tia phân giác)
Suy ra \(BM \cdot ED = BD \cdot EM.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
(1,0 điểm) Trong Kỳ thi tuyển sinh vào lớp 10 THPT, hai lớp 9A và 9B có tổng cộng 75 học sinh dự thi. Biết rằng, lớp 9A có \(80\% \) học sinh trúng tuyển so với số học sinh dự thi của lớp, lớp 9B có 90% học sinh trúng tuyển so với số học sinh dự thi của lớp. Tổng số học sinh trúng tuyến của hai lớp 9A và 9B là 64. Tính số học sinh dự thi của lớp 9A, lớp 9B.
Câu 2:
1) Bạn Thái gieo con xúc xắc đó 20 lần liên tiếp và ghi lại số chấm xuất hiện trong mỗi lần gieo thì thu được kết quả như sau:
\(1;\,\,6;\,\,2;\,\,2;\,\,1;\,\,5;\,\,5;\,\,3;\,\,3;\,\,3;\,\,4;\,\,6;\,\,4;\,\,4;\,\,2;\,\,2;\,\,2;\,\,4;\,\,3;\,\,6.\)Lập bảng tần số và bảng tần số tương đối cho dãy dữ liệu trên.
Câu 5:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận