Câu hỏi:

12/03/2025 69

Cho đường tròn \[\left( {O\,;\,\,3\,{\rm{cm}}} \right)\] và hai điểm \[A,\,\,B\] thỏa mãn \[OA = 3\,{\rm{cm,}}\,\,OB = 4\,{\rm{cm}}{\rm{.}}\]Khẳng định nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

– Vì \[OA = R\,\,\left( { = 3\,{\rm{cm}}} \right)\] nên điểm \[A\] nằm trên \[\left( O \right)\];

– Vì \[OB > R\,\,\left( {4\,\,{\rm{cm}} > 3\,{\rm{cm}}} \right)\] nên điểm \[B\] nằm trên \[\left( O \right)\].

Vậy khẳng định đúng là: Điểm \[A\] nằm trên \[\left( O \right),\] điểm \[B\] nằm ngoài \[\left( O \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Chứng minh bốn điểm \[D,M,N,O\] cùng nằm trên một đường tròn. (ảnh 1)

Ta có \[\widehat {AMO} = \widehat {ANO} = 90^\circ \] (giả thiết); \[\widehat {ADO} = 90^\circ \] (giả thiết).

Tam giác \[AMO\] vuông tại \[M\] nên tam giác \[AMO\] nội tiếp đường tròn đường kính \[AO\] có tâm là trung điểm của cạnh huyền \[AO.\]

Tương tự, hai tam giác \[ADO\]\[ANO\] ngoại tiếp đường tròn đường kính \[AO.\]

Suy ra bốn điểm \[D,M,N,O\] cùng nằm trên đường tròn đường kính \[AO.\]

Lời giải

Gọi \(x,\,\,y\) lần lượt là số trận hòa và số trận thắng \(\left( {x,\,\,y \in \mathbb{N}*} \right)\).

Mỗi đội bóng thi đấu với 3 đội còn lại, do đó có tất cả: \[\frac{{4 \cdot 3}}{2} = 6\] (trận).

Do đó ta có: \(x + y = 6 & \left( 1 \right)\)

Tổng số điểm trận hòa là \(2x\) (điểm)

Tổng số điểm trận thắng là \(3y\) (điểm).

Theo đề bài, tổng số điểm của tất cả các trận đấu bằng 16 điểm nên ta có phương trình

\(2x + 3y = 16 & \left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 6\\2x + 3y = 16\end{array} \right.\].

Giải hệ phương trình, ta được: \(\left\{ \begin{array}{l}x = 2\\y = 4\end{array} \right.\,\,\,\left( {{\rm{TM}}} \right)\).

Vậy có 2 trận hòa và 4 trận thắng.

Câu 3

Gieo một con xúc xắc 50 lần cho kết quả như sau:

Số chấm xuất hiện

1

2

3

4

5

6

Tần số

8

7

?

8

6

11

Tần số xuất hiện mặt 3 chấm là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Bất phương trình nào sau đây không phải là bất phương trình bậc nhất một ẩn \[x\]?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP