Để tính toán thời gian một chu kỳ đong đưa (một chu kỳ đong đưa dây đu được tính từ lúc dây đu bắt đầu được đưa lên cao đến khi dừng hẳn) của một dây đu, người ta sử dụng công thức: \({\rm{T}} = 2\pi \sqrt {\frac{{\rm{L}}}{{\rm{g}}}} \). Trong đó, T là thời gian một chu kỳ đong đưa, L là chiều dài của dây đu, \({\rm{g}} = 9,81\;{\rm{m}}/{{\rm{s}}^2}\).

a) Một dây đu có chiều dài \(2 + \sqrt 3 \;{\rm{m}}\), hỏi chu kỳ đong đưa dài bao nhiêu giây?
b) Một người muốn thiết kế một dây đu sao cho một chu kỳ đong đưa của nó kéo dài 4 giây. Hỏi người đó phải làm một dây đu dài bao nhiêu?
Để tính toán thời gian một chu kỳ đong đưa (một chu kỳ đong đưa dây đu được tính từ lúc dây đu bắt đầu được đưa lên cao đến khi dừng hẳn) của một dây đu, người ta sử dụng công thức: \({\rm{T}} = 2\pi \sqrt {\frac{{\rm{L}}}{{\rm{g}}}} \). Trong đó, T là thời gian một chu kỳ đong đưa, L là chiều dài của dây đu, \({\rm{g}} = 9,81\;{\rm{m}}/{{\rm{s}}^2}\).

a) Một dây đu có chiều dài \(2 + \sqrt 3 \;{\rm{m}}\), hỏi chu kỳ đong đưa dài bao nhiêu giây?
b) Một người muốn thiết kế một dây đu sao cho một chu kỳ đong đưa của nó kéo dài 4 giây. Hỏi người đó phải làm một dây đu dài bao nhiêu?
Câu hỏi trong đề: 33 bài tập Căn thức có lời giải !!
Quảng cáo
Trả lời:
Vậy chu kỳ đong đưa dài 3,88 giây.
b) Thay \({\rm{T}} = 4;{\rm{g}} = 9,81\) vào công thức \({\rm{T}} = 2\pi \sqrt {\frac{{\rm{L}}}{{\rm{g}}}} \), ta được:
\(4 = 2\pi \cdot \sqrt {\frac{{\rm{L}}}{{9,81}}} \Rightarrow \sqrt {\frac{{\rm{L}}}{{9,81}}} = \frac{2}{\pi } \Rightarrow \frac{{\rm{L}}}{{9,81}} = {\left( {\frac{2}{\pi }} \right)^2} \Rightarrow {\rm{L}} = 9,81.{\left( {\frac{2}{\pi }} \right)^2} \approx 4\;{\rm{m}}\)
Vậy phải làm một dây đu dài 4 m.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Thay \({{\rm{P}}_t} = 91703,8;{{\rm{P}}_0} = 90728,9\) vào công thức \(\overline {\rm{r}} = \sqrt {\frac{{{{\rm{P}}_{\rm{t}}}}}{{{{\rm{P}}_0}}}} - 1\), ta được:\(\bar r = \sqrt {\frac{{91703,8}}{{90728,9}}} - 1 = 0,0054 = 0,54\% \)
Vậy tốc độ tăng trương dân số bình quân hàng năm trong giai đoạn trên của Việt Nam là \(0,54\% \).
b) Thay \(r = 0,0054;{P_0} = 91703,8\) vào công thức \(\bar r = \sqrt {\frac{{{P_t}}}{{{P_0}}}} - 1\), ta được:
\(0,054 = \sqrt {\frac{{{{\rm{P}}_{\rm{t}}}}}{{91703,8}}} - 1 \Rightarrow \sqrt {\frac{{{{\rm{P}}_{\rm{t}}}}}{{91703,8}}} = 1,0054 \Rightarrow \frac{{{{\rm{P}}_{\rm{t}}}}}{{91703,8}} = {(1,0054)^2}\)
\( \Rightarrow {{\rm{P}}_{\rm{t}}} = {(1,0054)^2} \cdot 91703,8 \approx 92199,00052\)
Vậy ước tính số dân Việt Nam vào năm 2016 là 92199,00052 ngàn người.
Lời giải
a) Từ \(W = \frac{1}{2}m{v^2}\), ta có \({v^2} = \frac{{2\;W}}{{\;m}}\), suy ra \(v = \sqrt {\frac{{2\;W}}{{\;m}}} \) (do \(v \ge 0\)).
b) Khi \(m = 0,4\;kg,\;W = 0,5\;J\) thì \(v = \sqrt {\frac{{2.0,5}}{{0,4}}} = \sqrt {\frac{{10}}{4}} = \frac{{\sqrt {10} }}{2}\left( {\;m/s} \right)\). Sử dụng máy tính cầm tay, ta tính được \(v = \frac{{\sqrt {10} }}{2} \approx 1,58\left( {m/s} \right)\).
c) Khi vật có động năng \({{\rm{W}}_1} = 2\;{\rm{W}}\) thì vật có tốc độ \({v_1} = \sqrt {\frac{{2\;{W_1}}}{{\;m}}} = \sqrt {\frac{{2.2\;W}}{{\;m}}} = \sqrt 2 \sqrt {\frac{{2\;W}}{{\;m}}} = v\sqrt 2 \). Suy ra tốc độ của vật tăng gấp \(\sqrt 2 \) lần khi động năng của nó tăng gấp đôi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

