Câu hỏi:

14/04/2025 42

Gọi \[(x;y)\] là nghiệm nguyên dương nhỏ nhất của phương trình \[ - 4x + 3y = 8\]. Tính \(x + y\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn A
Ta có \[ - 4x + 3y = 8\] suy ra \[y = \frac{{4x + 8}}{3}\] hay \[y = x + \frac{{x + 8}}{3}\]
Đặt \[\frac{{x + 8}}{3} = t\] khi đó \[x = 3t - 8\] và \[y = 3t - 8 + t = 4t - 8{\mkern 1mu} {\mkern 1mu} (t \in \mathbb{Z})\]
Nên nghiệm nguyên của phương trình là \[\left\{ \begin{array}{l}x = 3t - 8\\y = 4t - 8\end{array} \right.(t \in \mathbb{Z})\]
Vì \[x,y\] nguyên dương nên \[\left\{ \begin{array}{l}x > 0\\y > 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}3t - 8 > 0\\4t - 8 > 0\end{array} \right.\] suy ra \[\left\{ \begin{array}{l}t > \frac{8}{3}\\t > 2\end{array} \right.\] nên \[t > \frac{8}{3}\] mà \[t \in \mathbb{Z} \Rightarrow t \ge 3\].
Nghiệm nguyên dương nhỏ nhất của phương trình là \[\left\{ \begin{array}{l}x = 3.3 - 8 = 1\\y = 4.3 - 8 = 4\end{array} \right.\]. Vậy \[x + y = 5\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Nghiệm tổng quát của phương trình \(x - y + 2 = 0\) là:

Lời giải

Chọn D
Ta có: \(x - y + 2 = 0\) suy ra \(y = x + 2\)
Nên có nghiệm tổng quát là \(\left\{ {\left( {x;x + 2} \right)\left| {x \in \mathbb{R}} \right.} \right\}\)

Câu 2

Cho đường thẳng \(d\) có phương trình \((m - 2)x + (3m - 1)y = 6m - 2\). Tìm các giá trị của tham số \[m\] để \[d\] song song với trục hoành.

Lời giải

Chọn B
Để \(d\) song song với trục hoành thì \[\left\{ \begin{array}{l}m - 2 = 0\\3m - 1 \ne 0\\6m - 2 \ne 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}m = 2\\m \ne \frac{1}{3}\end{array} \right.\] suy ra \[m = 2\]

Câu 3

Các phương trình sau, phương trình nào có nghiệm nguyên?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cặp số nào không là nghiệm của phương trình \(x + 2y = - 3\)?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Các nghiệm nguyên dương của phương trình \(5x + 3y = 50\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho đường thẳng \(d\) có phương trinh\(\frac{{m - 1}}{2}x + (1 - 2m)y = 2\). Tìm các giá trị của tham số \[m\] để \(d\) song song với trục tung.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Các phương trình sau, phương trình nào không có nghiệm nguyên?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay