Câu hỏi:

14/04/2025 251

Rút gọn biểu thức \(\sqrt {0,36{{(a - 1)}^2}} \) với \(a < 1\) ta được kết quả là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn C
\(\sqrt {0,36{{\left( {a - 1} \right)}^2}} = \sqrt {{{\left( {0,6} \right)}^2}} \,.\,\sqrt {{{\left( {a - 1} \right)}^2}} = 0,6\,.\,\left| {a - 1} \right| = 0,6\left( {1 - a} \right)\) (vì \[a < \,1\])

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B
Căn bậc hai số học của một số luôn phải là số dương, số 4 có hai căn bậc hai là 2 và -2. Vậy 2 là căn bậc 2 số học của 4

Lời giải

ĐKXĐ: \(\left\{ \begin{array}{l}x \ge 0\\x \ne 1\\x \ne 9\end{array} \right.\)
Ta có: \(P = \frac{{\sqrt x }}{{\sqrt x - 3}} = \frac{{\sqrt x - 3 + 3}}{{\sqrt x - 3}} = 1 + \frac{3}{{\sqrt x - 3}}.\)
Để \(P\) nhận giá trị là số nguyên dương thì \(\left\{ \begin{array}{l}P \in \mathbb{Z}\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\1 + \frac{3}{{\sqrt x - 3}} > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\frac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\\frac{{3 + \sqrt x - 3}}{{\sqrt x - 3}} > 0\end{array} \right.\)\(\left( {\sqrt x - 3} \right) \in \)Ư\[\left( 3 \right)\] \(\left( 1 \right)\) và \(\frac{{\sqrt x }}{{\sqrt x - 3}} > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (2)\)
\((1) \Leftrightarrow \left( {\sqrt x - 3} \right) \in \{ 1;3\} \Leftrightarrow \left[ \begin{array}{l}\sqrt x - 3 = 1\\\sqrt x - 3 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sqrt x = 4\\\sqrt x = 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 16{\mkern 1mu} \\x = 36{\mkern 1mu} \end{array} \right.\) (thỏa mãn điều kiện).
Nhận thấy \(x = 16;x = 36\) vẫn thỏa mãn \(\left( 2 \right)\)
Nên \(x = 16\) hoặc \(x = 36\) thì \(P\) nguyên dương.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP