Câu hỏi:

10/05/2025 5

Tìm GTLN của P = a2b + b2c + c2a biết a + b + c = 3; a, b, c ≥ 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Không mất tính tổng quát, giả sử a = max (a;b;c) , ta xét 2 trường hợp:

+) –a ≥ b ≥ c dẫn đến kết quả sau:

P = a2b + abc + c2b = b(a2 + ac + c2) \( \le b{\left( {a + c} \right)^2} \le \frac{1}{2}{\left[ {\frac{{2b + \left( {a + c} \right) + \left( {a + c} \right)}}{3}} \right]^3} = \frac{4}{{27}}\)

+) –a ≥ cb ≥ dẫn đến kết quả sau:

P = a2c + b2c + abc = c(a2 + ab + b2) \( \le b{\left( {a + c} \right)^2} \le \frac{1}{2}{\left[ {\frac{{2b + \left( {a + c} \right) + \left( {a + c} \right)}}{3}} \right]^3} = \frac{4}{{27}}\)

Vậy GTLN của P là \(\frac{4}{{27}}\) khi \(\left( {a;b;c} \right) = \left( {\frac{2}{3};\frac{1}{3};0} \right)\) và các hoán vị.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm GTLN của biểu thức \(A = \frac{{5 - {x^2}}}{{{x^2} + 3}}\)

Xem đáp án » 10/05/2025 6

Câu 2:

Tìm GTLN của \(M = \frac{{4a}}{{{a^2} + 4}}\)

Xem đáp án » 10/05/2025 6

Câu 3:

Tìm giá trị nguyên của x để giá trị của biểu thức \(A = \frac{{2x - 6}}{{{x^2} - 9}}\) nguyên

Xem đáp án » 10/05/2025 6

Câu 4:

Cho A là số chính phương gồm 4 chữ số. Nếu ta thêm vào mỗi chữ số của A 1 đơn vị thì ta được số chính phương B. Tìm A và B

Xem đáp án » 10/05/2025 5

Câu 5:

Tìm các hệ số a, b, c thỏa mãn (ax + b)(x2 – 2cx + abc) = x3 – 4x2 + 3x + \(\frac{9}{5}\) với mọi x.

Xem đáp án » 10/05/2025 5

Câu 6:

Tìm các số tự nhiên a, b thỏa mãn: (100a + 3b + 1)(2a + 10a + b) = 225

Xem đáp án » 10/05/2025 5

Câu 7:

Tìm điều kiện của các số hữu tỉ a,b,c sao cho đa thức ax19 + bx94 + cx1994 chia hết cho da thức x2 + x+1

Xem đáp án » 10/05/2025 5
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua