Câu hỏi:

23/05/2025 366

Cho hàm số \[y = \frac{{ax + b}}{{cx + d}}\left( {a,b,c,d \in \mathbb{R}} \right)\] có đồ thị là đường cong như hình vẽ dưới đây.

Toạ độ tâm đối xứng của đồ thị hàm số đã cho là: (ảnh 1) 

Toạ độ tâm đối xứng của đồ thị hàm số đã cho là:     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dựa vào đồ thị ta có:

+ Đường tiệm cận ngang của đồ thị hàm số là \[y = 1\];

+ Đường tiệm cận đứng của đồ thị hàm số là \[x =  - 1\].

Vậy tâm đối xứng của hàm số đã cho là điểm có toạ độ \[\left( { - 1;1} \right)\]. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Vì người chơi chọn ngẫu nhiên một trong hai đồng xu (một cân bằng và một thiên lệch), nên xác suất chọn được đồng xu cân bằng là \[P\left( A \right) = \frac{1}{2}\].

Câu 2

Lời giải

Hàm số \(y = {3^{ - x}} \Leftrightarrow y = {\left( {\frac{1}{3}} \right)^x}\) là hàm số mũ, cơ số \(a = \frac{1}{3}\) với \(0 < a < 1\)  nên nghịch biến trên \(\mathbb{R}\). Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP