Câu hỏi:
23/05/2025 299Một người tham gia trò chơi với \[3\]hộp quà đặc biệt: Hộp màu vàng có \[2\] điện thoại iPhone và \[3\] tai nghe, hộp màu bạc có \[4\] điện thoại iPhone và \[1\] tai nghe, hộp màu đồng có \[3\] điện iPhone và \[2\] tai nghe. Luật chơi được thực hiện qua hai bước sau:
Bước 1. Người chơi chọn ngẫu nhiên \[1\] hộp.
Bước 2. Từ hộp đã chọn, người chơi lấy ngẫu nhiên \[1\] món quà:
- Nếu quà là điện thoại iPhone, người chơi được giữ nó và lấy thêm \[1\] quà nữa từ cùng hộp.
- Nếu quà là tai nghe, trò chơi kết thúc.
Biết rằng người chơi lấy được \[2\] điện thoại iPhone, tính xác suất để người đó lấy từ hộp màu bạc (làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:
Đáp án: 0,6.
Gọi \[A\] là biến cố: “chọn hộp bạc”; \[C\] là biến cố: “chọn được 2 iPhone”.
Ta cần tính \[P\left( {A|C} \right) = \frac{{P\left( {A \cap C} \right)}}{{P\left( C \right)}}\].
Chọn ngẫu nhiên một trong 3 hộp thì xác suất mỗi hộp là .
Ta có \[P\left( {C|V} \right) = \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{{10}}\], \[P\left( {C|B} \right) = \frac{4}{5} \cdot \frac{3}{4} = \frac{3}{5}\], .
Suy ra .
Lại có \[P\left( {A \cap C} \right) = P\left( B \right) \cdot P\left( {C|B} \right) = \frac{1}{5}\].
Vậy \[P\left( {A|C} \right) = \frac{{\frac{1}{5}}}{{\frac{1}{3}}} = \frac{3}{5} = 0,6\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Vì người chơi chọn ngẫu nhiên một trong hai đồng xu (một cân bằng và một thiên lệch), nên xác suất chọn được đồng xu cân bằng là \[P\left( A \right) = \frac{1}{2}\].
Lời giải
Hàm số \(y = {3^{ - x}} \Leftrightarrow y = {\left( {\frac{1}{3}} \right)^x}\) là hàm số mũ, cơ số \(a = \frac{1}{3}\) với \(0 < a < 1\) nên nghịch biến trên \(\mathbb{R}\). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải