Quảng cáo
Trả lời:
Hàm số \(y = {3^{ - x}} \Leftrightarrow y = {\left( {\frac{1}{3}} \right)^x}\) là hàm số mũ, cơ số \(a = \frac{1}{3}\) với \(0 < a < 1\) nên nghịch biến trên \(\mathbb{R}\). Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Vì người chơi chọn ngẫu nhiên một trong hai đồng xu (một cân bằng và một thiên lệch), nên xác suất chọn được đồng xu cân bằng là \[P\left( A \right) = \frac{1}{2}\].
Lời giải
Đáp án: 23,4.
Lợi nhuận = Tiền thu được \[ - \] Chi phí sản xuất.
Gọi hàm lợi nhuận là \[f\left( A \right)\], ta có
\[f\left( A \right) = 20\,q\left( A \right) - \left[ {10q\left( A \right) + A} \right]\]
\[\begin{array}{l} = 10q\left( A \right) - A\\ = 10\left[ {1000 + \frac{{1013}}{5}\ln \left( {1 + A} \right)} \right] - A\\ = 10000 + 2026\ln \left( {1 + A} \right) - A\end{array}\]
\[ \Rightarrow f'\left( A \right) = 2026 \cdot \frac{{{{\left( {1 + A} \right)}^\prime }}}{{1 + A}} - 1 = \frac{{2026}}{{1 + A}} - 1 = 0 \Rightarrow A = 2025\].
Khảo sát thấy khi \[A = 2025\] thì lợi nhuận thu được tối đa, khi đó
\[f\left( A \right) = f\left( {2025} \right) = 10\,\,q\left( {2025} \right) - 2025 \approx 23401\] (triệu đồng) \[ \approx 23,4\] (tỷ đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.