Câu hỏi:
23/05/2025 111
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án.
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây.

Điểm cực tiểu của đồ thị hàm số trên là
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án.
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây.

Điểm cực tiểu của đồ thị hàm số trên là
Quảng cáo
Trả lời:
Dựa vào đồ thị hàm số ta thấy điểm cực tiểu của đồ thị hàm số là \(M\left( {1; - 3} \right)\).
Lưu ý: Cần phân biệt với điểm cực tiểu của hàm số là \(x = 1\). Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo bài ra, ta có bảng sau:
a) Đúng. Xác suất cả ba lần bắn trúng vòng \(10\) là: \({\left( {{P_1}} \right)^3} = 0,003375 \Rightarrow {P_1} = \sqrt[3]{{0,003375}} = 0,15\).
Lời giải
Ta có \({\left( {\frac{1}{2}} \right)^{x + 2}} \le 2 \Leftrightarrow {2^{ - x - 2}} \le 2 \Leftrightarrow - x - 2 \le 1 \Leftrightarrow x \ge - 3\).
Vì \(x \in \mathbb{Z},x \in \left[ { - 5;5} \right]\) nên \(x \in \left\{ { - 3; - 2; - 1;0;1;2;3;4;5} \right\}\). Vậy có 9 giá trị nguyên. Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.