Câu hỏi:
24/05/2025 62
Trong không gian \[Oxyz\], cho hai vectơ \[\overrightarrow u = \overrightarrow i + 3\overrightarrow j - 2\overrightarrow k \] và \[\overrightarrow v = \left( {2; - 1;1} \right)\]. Tích vô hướng \[\overrightarrow u \cdot \overrightarrow v \] bằng
Quảng cáo
Trả lời:
Ta có \[\overrightarrow u = \overrightarrow i + 3\overrightarrow j - 2\overrightarrow k \Rightarrow \overrightarrow u = \left( {1;3; - 2} \right)\].
Khi đó, \[\overrightarrow u \cdot \overrightarrow v = 1 \cdot 2 + 3 \cdot \left( { - 1} \right) - 2 \cdot 1 = - 3\]. Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo bài ra, ta có bảng sau:
a) Đúng. Xác suất cả ba lần bắn trúng vòng \(10\) là: \({\left( {{P_1}} \right)^3} = 0,003375 \Rightarrow {P_1} = \sqrt[3]{{0,003375}} = 0,15\).
Lời giải
Ta có \({\left( {\frac{1}{2}} \right)^{x + 2}} \le 2 \Leftrightarrow {2^{ - x - 2}} \le 2 \Leftrightarrow - x - 2 \le 1 \Leftrightarrow x \ge - 3\).
Vì \(x \in \mathbb{Z},x \in \left[ { - 5;5} \right]\) nên \(x \in \left\{ { - 3; - 2; - 1;0;1;2;3;4;5} \right\}\). Vậy có 9 giá trị nguyên. Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.