Câu hỏi:

24/05/2025 107 Lưu

Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{{x - 4}}{{ - 3}} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 3}}{{ - 5}}\). Phương trình tham số của đường thẳng \(d\)     

A. \(\left\{ \begin{array}{l}x = 4 - 3t\\y = - 1 - 2t\\z = 3 - 5t\end{array} \right.\).    
B. \(\left\{ \begin{array}{l}x = 3 + 4t\\y = 2 - t\\z = 5 + 3t\end{array} \right.\).                          
C. \(\left\{ \begin{array}{l}x = - 3 + 4t\\y = - 2 - t\\z = - 5 + 3t\end{array} \right.\).    
D. \(\left\{ \begin{array}{l}x = 4 + 3t\\y = 1 + 2t\\z = 3 + 5t\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có phương trình tham số của đường thẳng \(d\)\(\left\{ \begin{array}{l}x = 4 - 3t\\y = - 1 - 2t\\z = 3 - 5t\end{array} \right.\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Theo bài ra, ta có bảng sau:

Điểm

Xác suất

10

\({P_1}\)

9

\({P_2}\)

8

0,25

dưới 8

0,4

a) Đúng. Xác suất cả ba lần bắn trúng vòng \(10\) là: \({\left( {{P_1}} \right)^3} = 0,003375 \Rightarrow {P_1} = \sqrt[3]{{0,003375}} = 0,15\).

Lời giải

Đáp án: \(0,5\).

Gọi \(A\) là biến cố: “Trong 3 viên bi lấy ra từ hộp hai có 2 viên bi từ hộp thứ nhất chuyển sang”.

Gọi \(B\) là biến cố: “Ba viên bi lấy ra từ hộp hai là màu trắng”.

Trường hợp 1: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi trắng. Khi đó:

\({P_1}\left( B \right) = \frac{{C_7^2}}{{C_{12}^2}} \cdot \frac{{C_6^3}}{{C_{12}^3}} = \frac{7}{{242}}\).

Trường hợp 2: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi đỏ. Khi đó:

\({P_2}\left( B \right) = \frac{{C_5^2}}{{C_{12}^2}} \cdot \frac{{C_4^3}}{{C_{12}^3}} = \frac{1}{{363}}\).

Trường hợp 3: 2 viên bi từ hộp thứ nhất chuyển sang là 1 viên bi trắng và 1 viên bi đỏ. Khi đó:

\({P_3}\left( B \right) = \frac{{C_7^1.C_5^1}}{{C_{12}^2}} \cdot \frac{{C_5^3}}{{C_{12}^3}} = \frac{{35}}{{1452}}\).

Suy ra \(P\left( B \right) = {P_1}\left( B \right) + {P_2}\left( B \right) + {P_3}\left( B \right) = \frac{{27}}{{284}}\)\(P\left( {AB} \right) = {P_1}\left( B \right) = \frac{7}{{242}}\).

Do đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{7}{{242}}}}{{\frac{{27}}{{484}}}} = \frac{{14}}{{27}} \approx 0,5\).

Câu 3

A. \(3\).                         
B. \(8\).                         
C. \(10\).                                 
D. \(9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP