Câu hỏi:

23/05/2025 131

Một trường học tổ chức trải nghiệm cho học sinh bằng cách tổ chức các trò chơi, trong đó có trò chơi sử dụng đồng xu để xếp thành một kim tự tháp. Yêu cầu mỗi nhóm học sinh sử dụng \(253\) đồng tiền xu để xếp một mô hình kim tự tháp. Biết rằng tầng dưới cùng có \(58\) đồng xu và cứ lên thêm một tầng thì số đồng xu giảm đi \(7\) đồng. Tập hợp số xu ở mỗi tầng tạo thành     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số đồng xu ở tầng dưới cùng là \({u_1} = 58\).

Số đồng xu ở tầng thứ hai là \({u_2} = {u_1} + \left( { - 7} \right) = 58 - 7 = 51\).

Số đồng xu ở tầng thứ hai là \({u_3} = {u_2} + \left( { - 7} \right) = 51 - 7 = 44\).

…….

Vậy tập hợp số xu ở mỗi tầng tạo thành một cấp số cộng với số hạng đầu và công sai lần lượt là \({u_1} = 58;d = - 7\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Theo bài ra, ta có bảng sau:

Điểm

Xác suất

10

\({P_1}\)

9

\({P_2}\)

8

0,25

dưới 8

0,4

a) Đúng. Xác suất cả ba lần bắn trúng vòng \(10\) là: \({\left( {{P_1}} \right)^3} = 0,003375 \Rightarrow {P_1} = \sqrt[3]{{0,003375}} = 0,15\).

Câu 2

Lời giải

Ta có \({\left( {\frac{1}{2}} \right)^{x + 2}} \le 2 \Leftrightarrow {2^{ - x - 2}} \le 2 \Leftrightarrow - x - 2 \le 1 \Leftrightarrow x \ge - 3\).

\(x \in \mathbb{Z},x \in \left[ { - 5;5} \right]\) nên \(x \in \left\{ { - 3; - 2; - 1;0;1;2;3;4;5} \right\}\). Vậy có 9 giá trị nguyên. Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP