Câu hỏi:

24/05/2025 660 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right) = \ln \left( {4ex - {x^2}} \right)\).

a) \(f\left( e \right) = 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Ta có \(f\left( e \right) = \ln \left( {3{e^2}} \right) = 2 + \ln 3\).

Câu hỏi cùng đoạn

Câu 2:

b) Hàm số có tập xác định là \(\left[ {0;4e} \right]\).

Xem lời giải

verified Giải bởi Vietjack

b) Sai. Điều kiện: \(4ex - {x^2} > 0 \Leftrightarrow 0 < x < 4e\). Tập xác định của hàm số là \(\left( {0;4e} \right)\).

Câu 3:

c) Phương trình \(f'\left( x \right) = 0\) có một nghiệm \(x = 2e\).

Xem lời giải

verified Giải bởi Vietjack

c) Đúng. Ta có \(f'\left( x \right) = \frac{{4e - 2x}}{{4ex - {x^2}}}\); \(f'\left( x \right) = 0 \Leftrightarrow 4e - 2x = 0 \Leftrightarrow x = 2e\).

Câu 4:

d) Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {1;3e} \right]\) có dạng \(a\ln 2 + b\) thì \(a + b = 4\).

Xem lời giải

verified Giải bởi Vietjack

d) Đúng. Bảng biến thiên của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {1;3e} \right]\):

Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {1;3e} \right]\) là \(2\ln 2 + 2\).

Suy ra \(a = 2;b = 2\). Do đó \(a + b = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(0,5\).

Gọi \(A\) là biến cố: “Trong 3 viên bi lấy ra từ hộp hai có 2 viên bi từ hộp thứ nhất chuyển sang”.

Gọi \(B\) là biến cố: “Ba viên bi lấy ra từ hộp hai là màu trắng”.

Trường hợp 1: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi trắng. Khi đó:

\({P_1}\left( B \right) = \frac{{C_7^2}}{{C_{12}^2}} \cdot \frac{{C_6^3}}{{C_{12}^3}} = \frac{7}{{242}}\).

Trường hợp 2: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi đỏ. Khi đó:

\({P_2}\left( B \right) = \frac{{C_5^2}}{{C_{12}^2}} \cdot \frac{{C_4^3}}{{C_{12}^3}} = \frac{1}{{363}}\).

Trường hợp 3: 2 viên bi từ hộp thứ nhất chuyển sang là 1 viên bi trắng và 1 viên bi đỏ. Khi đó:

\({P_3}\left( B \right) = \frac{{C_7^1.C_5^1}}{{C_{12}^2}} \cdot \frac{{C_5^3}}{{C_{12}^3}} = \frac{{35}}{{1452}}\).

Suy ra \(P\left( B \right) = {P_1}\left( B \right) + {P_2}\left( B \right) + {P_3}\left( B \right) = \frac{{27}}{{284}}\)\(P\left( {AB} \right) = {P_1}\left( B \right) = \frac{7}{{242}}\).

Do đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{7}{{242}}}}{{\frac{{27}}{{484}}}} = \frac{{14}}{{27}} \approx 0,5\).

Lời giải

Đáp án: 2,07.

Chọn hệ trục tọa độ Oxy như hình vẽ dưới đây:

Hỏi sau khi đổ thêm, chiều cao của mực nước trong ly đã tăng thêm bao nhiêu centimét so với lúc ban đầu (làm tròn kết quả đến hàng phần trăm)? (ảnh 2) 

Gọi dạng của parabol là \(\left( P \right):{y^2} = 2px\).

Ta có \(x = 10,y = 4 \Rightarrow p = \frac{4}{5} \Rightarrow \left( P \right):{y^2} = \frac{8}{5}x\).

Thể tích ly nước nếu đổ đầy: \(V = \pi \int\limits_0^{10} {{y^2}{\rm{d}}x} = \pi \int\limits_0^{10} {\frac{8}{5}x{\rm{d}}x} = \left. {\frac{{4\pi {x^2}}}{5}} \right|_0^{10} = 80\pi .\)

Thể tích của nước trong ly lúc mới đổ lần đầu là: \(\pi \int\limits_0^{{h_1}} {\frac{8}{5}x{\rm{d}}x} = \frac{1}{4} \cdot 80\pi \Leftrightarrow \frac{{4h_1^2}}{5} = 20 \Rightarrow {h_1} = 5\).

Khi đó, chiều cao của nước ban đầu là \({h_1} = 5\,\left( {{\rm{cm}}} \right)\).

Thể tích của nước trong ly sau khi đổ thêm là: \(\pi \int\limits_0^{{h_2}} {\frac{8}{5}x{\rm{d}}x} = 2 \cdot \frac{1}{4} \cdot 80\pi \Leftrightarrow \frac{{4h_2^2}}{5} = 40 \Rightarrow {h_2} = 5\sqrt 2 \).

Chiều cao của mực nước sau khi đổ thêm là \({h_2} = 5\sqrt 2 \,\,\left( {{\rm{cm}}} \right)\).

Chiều cao của mực nước tăng thêm so với ban đầu: \(h = {h_2} - {h_1} = 5\sqrt 2 - 5 \approx 2,07{\rm{ (cm)}}{\rm{.}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(3\).                         
B. \(8\).                         
C. \(10\).                                 
D. \(9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP