Câu hỏi:

24/05/2025 291 Lưu

Trong một khu du lịch, người ta cho du khách trải nghiệm thiên nhiên bằng cách đu theo đường trượt zipline từ vị trí \(A\) cao \(15{\rm{\;m}}\) của tháp 1 này sang vị trí \(B\) cao \(10{\rm{\;m}}\) của tháp 2 trong khung cảnh tuyệt đẹp xung quanh.

v (ảnh 1)

Với hệ trục toạ độ \(Oxyz\) cho trước (đơn vị: mét), toạ độ của \(A\)\(B\) lần lượt là \(A\left( {3;2,5;15} \right)\)\(B\left( {21;27,5;10} \right)\). Khi du khách khi ở độ cao 12 mét thì tọa độ của du khách lúc đó là \(M\left( {a;b;c} \right)\). Tính giá trị biểu thức \(T = a + b + c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(43,3\).

Phương trình đường thẳng chứa đường trượt zipline là đường thẳng\(AB\).

Ta có \(A\left( {3;2,5;15} \right)\), \(B\left( {21;27,5;10} \right) \Rightarrow \overrightarrow {AB} = \left( {18;25; - 5} \right)\).

Phương trình đường thẳng chứa đường trượt zipline là \(\left\{ \begin{array}{l}x = 3 + 18t\\y = 2,5 + 25t\\z = 15 - 5t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\).

Khi du khách khi ở độ cao 12 mét \( \Rightarrow z = 12 \Rightarrow 15 - 5t = 12 \Rightarrow t = \frac{3}{5}\).

Thay \(t = \frac{3}{5}\) vào phương trình đường thẳng \(AB\) ta được \(\left\{ \begin{array}{l}x = 13,8\\y = 17,5\\z = 12\end{array} \right.{\rm{ }} \Rightarrow M\left( {13,8;17,5;12} \right)\).

Vậy \(T = a + b + c = 13,8 + 17,5 + 12 = 43,3.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(0,5\).

Gọi \(A\) là biến cố: “Trong 3 viên bi lấy ra từ hộp hai có 2 viên bi từ hộp thứ nhất chuyển sang”.

Gọi \(B\) là biến cố: “Ba viên bi lấy ra từ hộp hai là màu trắng”.

Trường hợp 1: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi trắng. Khi đó:

\({P_1}\left( B \right) = \frac{{C_7^2}}{{C_{12}^2}} \cdot \frac{{C_6^3}}{{C_{12}^3}} = \frac{7}{{242}}\).

Trường hợp 2: 2 viên bi từ hộp thứ nhất chuyển sang là 2 viên bi đỏ. Khi đó:

\({P_2}\left( B \right) = \frac{{C_5^2}}{{C_{12}^2}} \cdot \frac{{C_4^3}}{{C_{12}^3}} = \frac{1}{{363}}\).

Trường hợp 3: 2 viên bi từ hộp thứ nhất chuyển sang là 1 viên bi trắng và 1 viên bi đỏ. Khi đó:

\({P_3}\left( B \right) = \frac{{C_7^1.C_5^1}}{{C_{12}^2}} \cdot \frac{{C_5^3}}{{C_{12}^3}} = \frac{{35}}{{1452}}\).

Suy ra \(P\left( B \right) = {P_1}\left( B \right) + {P_2}\left( B \right) + {P_3}\left( B \right) = \frac{{27}}{{284}}\)\(P\left( {AB} \right) = {P_1}\left( B \right) = \frac{7}{{242}}\).

Do đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{7}{{242}}}}{{\frac{{27}}{{484}}}} = \frac{{14}}{{27}} \approx 0,5\).

Lời giải

Đáp án: 2,07.

Chọn hệ trục tọa độ Oxy như hình vẽ dưới đây:

Hỏi sau khi đổ thêm, chiều cao của mực nước trong ly đã tăng thêm bao nhiêu centimét so với lúc ban đầu (làm tròn kết quả đến hàng phần trăm)? (ảnh 2) 

Gọi dạng của parabol là \(\left( P \right):{y^2} = 2px\).

Ta có \(x = 10,y = 4 \Rightarrow p = \frac{4}{5} \Rightarrow \left( P \right):{y^2} = \frac{8}{5}x\).

Thể tích ly nước nếu đổ đầy: \(V = \pi \int\limits_0^{10} {{y^2}{\rm{d}}x} = \pi \int\limits_0^{10} {\frac{8}{5}x{\rm{d}}x} = \left. {\frac{{4\pi {x^2}}}{5}} \right|_0^{10} = 80\pi .\)

Thể tích của nước trong ly lúc mới đổ lần đầu là: \(\pi \int\limits_0^{{h_1}} {\frac{8}{5}x{\rm{d}}x} = \frac{1}{4} \cdot 80\pi \Leftrightarrow \frac{{4h_1^2}}{5} = 20 \Rightarrow {h_1} = 5\).

Khi đó, chiều cao của nước ban đầu là \({h_1} = 5\,\left( {{\rm{cm}}} \right)\).

Thể tích của nước trong ly sau khi đổ thêm là: \(\pi \int\limits_0^{{h_2}} {\frac{8}{5}x{\rm{d}}x} = 2 \cdot \frac{1}{4} \cdot 80\pi \Leftrightarrow \frac{{4h_2^2}}{5} = 40 \Rightarrow {h_2} = 5\sqrt 2 \).

Chiều cao của mực nước sau khi đổ thêm là \({h_2} = 5\sqrt 2 \,\,\left( {{\rm{cm}}} \right)\).

Chiều cao của mực nước tăng thêm so với ban đầu: \(h = {h_2} - {h_1} = 5\sqrt 2 - 5 \approx 2,07{\rm{ (cm)}}{\rm{.}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(3\).                         
B. \(8\).                         
C. \(10\).                                 
D. \(9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP