Câu hỏi:

24/05/2025 54

Trường THPT X có \(800\) học sinh, trong đó có \(360\) học sinh tham gia câu lạc bộ thể thao. Trong số các học sinh tham gia câu lạc bộ thể thao của trường có \(188\) học sinh biết bơi. Trong số các học sinh của trường không tham gia câu lạc bộ thể thao có \(132\) học sinh biết bơi. Chọn ngẫu nhiên một học sinh của trường THPT X.

Gọi \(A\) là biến cố: “Chọn được học sinh thuộc câu lạc bộ thể thao”.

Gọi \(B\) là biến cố: “Chọn được học sinh biết bơi”.

a) Xác suất \(P\left( A \right) = 0,45\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Xác suất \(P\left( A \right) = \frac{{360}}{{800}} = 0,45\).

Câu hỏi cùng đoạn

Câu 2:

b) Xác suất có điều kiện \(P\left( {B|\overline A } \right) = 0,2\).

Xem lời giải

verified Lời giải của GV VietJack

b) Sai. Số học sinh không tham gia câu lạc bộ là: \(800 - 360 = 440\).

Xác suất có điều kiện \(P\left( {B|\overline A } \right) = \frac{{132}}{{440}} = 0,3\).

Câu 3:

c) Xác suất \(P\left( B \right) = 0,45\).

Xem lời giải

verified Lời giải của GV VietJack

c) Sai. Số học sinh biết bơi là: \(188 + 132 = 320\).

Xác suất \(P\left( B \right) = \frac{{320}}{{800}} = 0,4\).

Câu 4:

d) Xác suất chọn được học sinh thuộc câu lạc bộ thể thao mà học sinh đó biết bơi bằng \(0,58\) (làm tròn kết quả đến hàng phần trăm).

Xem lời giải

verified Lời giải của GV VietJack

d) Sai. Ta có \(P\left( {B|A} \right) = \frac{{188}}{{360}}\).

Áp dụng công thức Bayes, xác suất chọn được học sinh thuộc câu lạc bộ thể thao mà học sinh đó biết bơi là: \(P\left( {A|B} \right) = \frac{{P\left( A \right) \cdot P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,45 \cdot \frac{{188}}{{360}}}}{{0,4}} = \frac{{47}}{{80}} = 0,5875 \approx 0,59\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một quả bóng bầu dục theo quy định được sử dụng trong giải bóng bầu dục quốc gia có kích thước \(28\,{\rm{cm}}\) từ đầu này đến đầu kia và đường kính \(17\,{\rm{cm}}\) ở phần dày nhất (quy định cho phép thay đổi một chút về các kích thước này) (Nguồn: NFL).

v (ảnh 1) 

Hình dạng của một quả bóng bầu dục có kích thước nói trên có thể được tạo thành khi quay phần diện tích hình phẳng giới hạn bởi đồ thị hàm số \(f\left( x \right) = a{x^2} + bx + c\), trục hoành và các đường thẳng \(x = - 4\); \(x = 24\), trong đó \(x\) tính bằng \({\rm{cm}}\). Thể tích (đơn vị: \({\rm{c}}{{\rm{m}}^{\rm{3}}}\), kết quả làm tròn đến hàng đơn vị) của quả bóng bầu dục có kích thước nói trên bằng bao nhiêu.

Xem đáp án » 24/05/2025 424

Câu 2:

a) Quãng đường (kết quả làm tròn đến hàng đơn vị) xe Taxi đi được từ trạm thu phí đến khi nhập làn khoảng \[{\rm{187 m}}\].

Xem đáp án » 24/05/2025 125

Câu 3:

a) Giá trị của \(b + c\) bằng \( - 3\).

Xem đáp án » 24/05/2025 43

Câu 4:

a) Quãng đường (kết quả làm tròn đến hàng đơn vị) xe Taxi đi được từ trạm thu phí đến khi nhập làn khoảng \[{\rm{187 m}}\].

Xem đáp án » 24/05/2025 42

Câu 5:

Khảo sát thời gian sử dụng điện thoại một ngày của học sinh lớp 12A thì được mẫu số liệu ghép nhóm sau:

Thời gian (phút)

\(\)\(\left[ {0\,;\,20} \right)\)

\(\left[ {20\,;\,40} \right)\)

\(\left[ {40\,;\,60} \right)\)

\(\left[ {60\,;\,80} \right)\)

\(\left[ {80\,;\,100} \right)\)

Số học sinh

2

5

7

19

9

Độ lệch chuẩn của mẫu số liệu ghép nhóm trên thuộc khoảng nào dưới đây?     

Xem đáp án » 24/05/2025 33

Câu 6:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \[2a,\,\,SA \bot \left( {ABCD} \right)\]\[SA = 4a.\] Số đo góc nhị diện \[\left[ {B,SC,A} \right]\] bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?

Xem đáp án » 24/05/2025 16
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay