Một quả bóng bầu dục theo quy định được sử dụng trong giải bóng bầu dục quốc gia có kích thước \(28\,{\rm{cm}}\) từ đầu này đến đầu kia và đường kính \(17\,{\rm{cm}}\) ở phần dày nhất (quy định cho phép thay đổi một chút về các kích thước này) (Nguồn: NFL).
Hình dạng của một quả bóng bầu dục có kích thước nói trên có thể được tạo thành khi quay phần diện tích hình phẳng giới hạn bởi đồ thị hàm số \(f\left( x \right) = a{x^2} + bx + c\), trục hoành và các đường thẳng \(x = - 4\); \(x = 24\), trong đó \(x\) tính bằng \({\rm{cm}}\). Thể tích (đơn vị: \({\rm{c}}{{\rm{m}}^{\rm{3}}}\), kết quả làm tròn đến hàng đơn vị) của quả bóng bầu dục có kích thước nói trên bằng bao nhiêu.
Một quả bóng bầu dục theo quy định được sử dụng trong giải bóng bầu dục quốc gia có kích thước \(28\,{\rm{cm}}\) từ đầu này đến đầu kia và đường kính \(17\,{\rm{cm}}\) ở phần dày nhất (quy định cho phép thay đổi một chút về các kích thước này) (Nguồn: NFL).
Hình dạng của một quả bóng bầu dục có kích thước nói trên có thể được tạo thành khi quay phần diện tích hình phẳng giới hạn bởi đồ thị hàm số \(f\left( x \right) = a{x^2} + bx + c\), trục hoành và các đường thẳng \(x = - 4\); \(x = 24\), trong đó \(x\) tính bằng \({\rm{cm}}\). Thể tích (đơn vị: \({\rm{c}}{{\rm{m}}^{\rm{3}}}\), kết quả làm tròn đến hàng đơn vị) của quả bóng bầu dục có kích thước nói trên bằng bao nhiêu.
Quảng cáo
Trả lời:

Đáp án: 3390.
Chọn hệ trục tọa độ \(Oxy\) sao cho parabol \(f\left( x \right) = a{x^2} + bx + c\) cắt trục hoành tại các điểm \(\left( { - 4;0} \right)\), \(\left( {24;0} \right)\) và tọa độ đỉnh \(I\left( {10; - \frac{{17}}{2}} \right)\).
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}\begin{array}{l}16a - 4b + c = 0\\576a + 24b + c = 0\,\,\,\,\,\,\end{array}\\{100a + 10b + c = - \frac{{17}}{2}}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{17}}{{392}}\\b = - \frac{{85}}{{98}}\\c = - \frac{{204}}{{49}}\end{array} \right.\).
Nên \(f\left( x \right) = \frac{{17}}{{392}}{x^2} - \frac{{85}}{{98}}x - \frac{{204}}{{49}}\).
Thể tích của quả bóng bầu dục là:
\(V = \pi \int\limits_{ - 4}^{24} {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x = \pi } \int\limits_{ - 4}^{24} {{{\left[ {\frac{{17}}{{392}}{x^2} - \frac{{85}}{{98}}x - \frac{{204}}{{49}}} \right]}^2}{\rm{d}}x = } \frac{{16184\pi }}{{15}}\)\( \approx 3390\) (\({\rm{c}}{{\rm{m}}^{\rm{3}}}\)).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(t\) là thời gian tính từ lúc xe Taxi bắt đầu chuyển động (\(t \ge 0\), đơn vị giây).
Vận tốc của xe Taxi: \({v_T}\left( t \right) = - \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t\) (m/s).
Xe Cứu thương xuất phát sau 1 giây (\(t = 1\)) với gia tốc \(a\) và vận tốc ban đầu \(0\).
Gọi \(t' = t - 1\) là thời gian chuyển động của xe Cứu thương (\(t' \ge 0\)).
Vận tốc xe Cứu thương: \({v_A}\left( {t'} \right) = at'\).
Quãng đường xe Cứu thương: \({S_A}\left( {t'} \right) = \frac{1}{2}a{\left( {t'} \right)^2}\).
a) Sai. Quãng đường xe Taxi đi được đến khi nhập làn (\(t = 20\)\[{\rm{s}}\]):
\({S_T}\left( {20} \right) = \int\limits_0^{20} {{v_T}\left( t \right)\,{\rm{d}}t} = \int\limits_0^{20} {\left( { - \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t} \right){\rm{d}}t} \) \[ = \left. {\left( { - \frac{{{t^3}}}{{540}} + \frac{{58}}{{135}}{t^2}} \right)} \right|_0^{20} = - \frac{{{{20}^3}}}{{540}} + \frac{{58}}{{135}} \cdot {20^2} = \frac{{4240}}{{27}} \approx 157\,{\rm{(m)}}\].
Lời giải
Đáp án: 3,74.
Giả sử chi phí sản xuất các mặt hình trụ là như nhau và các mép nối không đáng kể.
Ta có, thể tích hình trụ là \(V = \pi {r^2}h = 330{\rm{ (ml)}} = 330{\rm{ (c}}{{\rm{m}}^3}) \Rightarrow h = \frac{{330}}{{\pi {r^2}}}{\rm{ (cm)}}\).
Diện tích toàn phần của hộp đựng là: \(S\left( r \right) = 2\pi {r^2} + 2\pi r \cdot h = 2\pi {r^2} + \frac{{660}}{r}\).
Ta có \(S'\left( r \right) = 4\pi r - \frac{{660}}{{{r^2}}}\); \(S'\left( r \right) = 0 \Rightarrow {r^3} = \frac{{165}}{\pi } \Rightarrow r = \sqrt[3]{{\frac{{165}}{\pi }}} \approx {\rm{3,74 (cm)}}\).
Bảng biến thiên:
Vậy \(r = \sqrt[3]{{\frac{{165}}{\pi }}} \approx 3,74{\rm{ (cm)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.