Câu hỏi:
24/05/2025 74Một chủ nhà hàng kinh doanh phần ăn uống đồng giá có chiến lược kinh doanh như sau: Phí cố định được ước tính trong một năm là \(55\) triệu đồng. Chi phí một phần ăn ước tính khoảng \(22\) nghìn đồng. Giá niêm yết trên thực đơn là \(30\) nghìn đồng. Giả định rằng tất cả các phần ăn chế biến sẵn đều được bán hết và kí hiệu \(x\) là số phần ăn trong một năm, giả sử \(x\) là số nguyên thuộc đoạn \(\left[ {5\,000;\,25\,000} \right]\). Mục tiêu của chủ nhà hàng là tạo ra lợi nhuận ít nhất là \(135\) triệu đồng mỗi năm. Biết rằng nhà hàng mở cửa \(300\) ngày một năm, hỏi trung bình mỗi ngày nhà hàng phải phục vụ ít nhất bao nhiêu phần ăn để đạt mục tiêu trên?
Quảng cáo
Trả lời:
Đáp án: \(80\).
Tổng chi phí hằng năm cho \(x\) phần ăn là \(22x + 55\,000\) (nghìn đồng).
Tổng lợi nhuận hằng năm cho \(x\) phần ăn là
\(L\left( x \right) = 30x - \left( {22x + 55\,000} \right) = 8x - 55\,000\) (nghìn đồng).
Để đạt mục tiêu lợi nhuận ít nhất \(135\) triệu đồng \( = 135\,000\) nghìn đồng mỗi năm thì
\(L\left( x \right) \ge 135\,000\)\( \Leftrightarrow 8x - 55\,000 \ge 135\,000\)\( \Leftrightarrow x \ge 23\,750\).
Do đó hàng năm, nhà hàng cần phục vụ tối thiểu \(23\,750\) phần ăn thì mới có lợi nhuận như mong muốn.
Do nhà hàng mở cửa \(300\) ngày một năm nên trung bình mỗi ngày nhà hàng cần phục vụ là
\(23\,750:300 \approx 79,2\) (phần ăn).
Vậy để đạt được mục tiêu thì trung bình mỗi ngày nhà hàng cần phục vụ ít nhất \(80\) phần ăn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(t\) là thời gian tính từ lúc xe Taxi bắt đầu chuyển động (\(t \ge 0\), đơn vị giây).
Vận tốc của xe Taxi: \({v_T}\left( t \right) = - \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t\) (m/s).
Xe Cứu thương xuất phát sau 1 giây (\(t = 1\)) với gia tốc \(a\) và vận tốc ban đầu \(0\).
Gọi \(t' = t - 1\) là thời gian chuyển động của xe Cứu thương (\(t' \ge 0\)).
Vận tốc xe Cứu thương: \({v_A}\left( {t'} \right) = at'\).
Quãng đường xe Cứu thương: \({S_A}\left( {t'} \right) = \frac{1}{2}a{\left( {t'} \right)^2}\).
a) Sai. Quãng đường xe Taxi đi được đến khi nhập làn (\(t = 20\)\[{\rm{s}}\]):
\({S_T}\left( {20} \right) = \int\limits_0^{20} {{v_T}\left( t \right)\,{\rm{d}}t} = \int\limits_0^{20} {\left( { - \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t} \right){\rm{d}}t} \) \[ = \left. {\left( { - \frac{{{t^3}}}{{540}} + \frac{{58}}{{135}}{t^2}} \right)} \right|_0^{20} = - \frac{{{{20}^3}}}{{540}} + \frac{{58}}{{135}} \cdot {20^2} = \frac{{4240}}{{27}} \approx 157\,{\rm{(m)}}\].
Lời giải
Đáp án: 3390.
Chọn hệ trục tọa độ \(Oxy\) sao cho parabol \(f\left( x \right) = a{x^2} + bx + c\) cắt trục hoành tại các điểm \(\left( { - 4;0} \right)\), \(\left( {24;0} \right)\) và tọa độ đỉnh \(I\left( {10; - \frac{{17}}{2}} \right)\).
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}\begin{array}{l}16a - 4b + c = 0\\576a + 24b + c = 0\,\,\,\,\,\,\end{array}\\{100a + 10b + c = - \frac{{17}}{2}}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{17}}{{392}}\\b = - \frac{{85}}{{98}}\\c = - \frac{{204}}{{49}}\end{array} \right.\).
Nên \(f\left( x \right) = \frac{{17}}{{392}}{x^2} - \frac{{85}}{{98}}x - \frac{{204}}{{49}}\).
Thể tích của quả bóng bầu dục là:
\(V = \pi \int\limits_{ - 4}^{24} {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x = \pi } \int\limits_{ - 4}^{24} {{{\left[ {\frac{{17}}{{392}}{x^2} - \frac{{85}}{{98}}x - \frac{{204}}{{49}}} \right]}^2}{\rm{d}}x = } \frac{{16184\pi }}{{15}}\)\( \approx 3390\) (\({\rm{c}}{{\rm{m}}^{\rm{3}}}\)).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải