Câu hỏi:

24/05/2025 229

Trong không gian chọn hệ trục toạ độ cho trước, đơn vị đo là kilômét, một rada phát hiện một máy bay chiến đấu di chuyển với vận tốc và hướng không đổi từ điểm \(M\left( {1100\,;\,650\,;\,14} \right)\) đến điểm \(N\) trong 20 phút. Nếu đến \(N\) máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay trong 10 phút tiếp theo là \(Q\left( {1500\,;\,860\,;\,16} \right)\). Biết một khẩu pháo ở toạ độ vị trí điểm \(E\left( {\frac{{1700}}{3}\,;\,370\,;\,\frac{{34}}{3}} \right)\) được bắn ra với vận tốc không đổi gấp 5 lần vận tốc máy bay nhằm bắn trúng máy bay tại vị trí \(N\). Sau bao nhiêu phút khi máy bay bay từ \(M\) thì người điều khiển pháo phải bắn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: 8.

Do vận tốc của máy bay không đổi nên thời gian và quãng đường là hai đại lượng tỉ lệ thuận.

Thời gian máy bay di chuyển từ \(M\) đến \(Q\) là 30 phút nên \(\frac{{MN}}{{MQ}} = \frac{{20}}{{30}} = \frac{2}{3}\), do đó \(\overrightarrow {MN}  = \frac{2}{3}\overrightarrow {MQ} \).

Ta có \(\overrightarrow {MN}  = \left( {{x_N} - 1100\,;\,{y_N} - 650\,;\,{z_N} - 14} \right)\); \(\overrightarrow {MQ}  = \left( {400\,;210\,;2} \right)\).

Suy ra \(\left\{ \begin{array}{l}{x_N} = \frac{2}{3} \cdot 400 + 1100 = \frac{{4100}}{3}\\{y_N} = \frac{2}{3} \cdot 210 + 650 = 790\\{z_N} = \frac{2}{3} \cdot 2 + 14 = \frac{{46}}{3}\end{array} \right.\) tức là \(N\left( {\frac{{4100}}{3}\,;790 &  & \,;\frac{{46}}{3}} \right)\).

Ta có \(\overrightarrow {MN}  = \left( {\frac{{800}}{3}\,;\,140\,;\,\frac{4}{3}} \right)\), \(\overrightarrow {ME}  = \left( {\frac{{ - 1600}}{3}\,;\, - 280\,;\,\frac{{ - 8}}{3}} \right)\).

Khi đó \(\frac{{\frac{{800}}{3}}}{{\frac{{ - 1600}}{3}}} = \frac{{140}}{{ - 280}} = \frac{{\frac{4}{3}}}{{\frac{{ - 8}}{3}}} =  - \frac{1}{2}\) nên ba điểm \(M\), \(E\), \(N\) thẳng hàng; \(M\) nằm giữa \(E\) và \(N\); \(ME = 2MN\).

Giả sử sau \(x\) phút khi máy bay bay từ \(M\) thì người điều khiển pháo phải bắn.

 

Khi đó vận tốc khẩu pháo là \(\frac{{EN}}{{20 - x}}\) km/phút; vận tốc máy bay là \(\frac{{MN}}{{20}}\) km/phút.

Theo đề bài \(\frac{{EN}}{{20 - x}} = 5 \cdot \frac{{MN}}{{20}} = \frac{{MN}}{4}\). Suy ra \(\frac{{3MN}}{{20 - x}} = \frac{{MN}}{4}\). Suy ra \(20 - x = 12\)\( \Leftrightarrow x = 8\).

Vậy sau 8 phút khi máy bay bay từ \(M\) thì người điều khiển pháo phải bắn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(t\) là thời gian tính từ lúc xe Taxi bắt đầu chuyển động (\(t \ge 0\), đơn vị giây).

Vận tốc của xe Taxi: \({v_T}\left( t \right) =  - \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t\) (m/s).

Xe Cứu thương xuất phát sau 1 giây (\(t = 1\)) với gia tốc \(a\) và vận tốc ban đầu \(0\).

Gọi \(t' = t - 1\) là thời gian chuyển động của xe Cứu thương (\(t' \ge 0\)).

Vận tốc xe Cứu thương: \({v_A}\left( {t'} \right) = at'\).

Quãng đường xe Cứu thương: \({S_A}\left( {t'} \right) = \frac{1}{2}a{\left( {t'} \right)^2}\).

a) Sai. Quãng đường xe Taxi đi được đến khi nhập làn (\(t = 20\)\[{\rm{s}}\]):

\({S_T}\left( {20} \right) = \int\limits_0^{20} {{v_T}\left( t \right)\,{\rm{d}}t}  = \int\limits_0^{20} {\left( { - \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t} \right){\rm{d}}t} \) \[ = \left. {\left( { - \frac{{{t^3}}}{{540}} + \frac{{58}}{{135}}{t^2}} \right)} \right|_0^{20} =  - \frac{{{{20}^3}}}{{540}} + \frac{{58}}{{135}} \cdot {20^2} = \frac{{4240}}{{27}} \approx 157\,{\rm{(m)}}\].

Lời giải

Đáp án: 3390.

Chọn hệ trục tọa độ \(Oxy\) sao cho parabol \(f\left( x \right) = a{x^2} + bx + c\) cắt trục hoành tại các điểm \(\left( { - 4;0} \right)\), \(\left( {24;0} \right)\) và tọa độ đỉnh \(I\left( {10; - \frac{{17}}{2}} \right)\).

Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}\begin{array}{l}16a - 4b + c = 0\\576a + 24b + c = 0\,\,\,\,\,\,\end{array}\\{100a + 10b + c =  - \frac{{17}}{2}}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{17}}{{392}}\\b =  - \frac{{85}}{{98}}\\c =  - \frac{{204}}{{49}}\end{array} \right.\).

Nên \(f\left( x \right) = \frac{{17}}{{392}}{x^2} - \frac{{85}}{{98}}x - \frac{{204}}{{49}}\).

Thể tích của quả bóng bầu dục là:

\(V = \pi \int\limits_{ - 4}^{24} {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x = \pi } \int\limits_{ - 4}^{24} {{{\left[ {\frac{{17}}{{392}}{x^2} - \frac{{85}}{{98}}x - \frac{{204}}{{49}}} \right]}^2}{\rm{d}}x = } \frac{{16184\pi }}{{15}}\)\( \approx 3390\) (\({\rm{c}}{{\rm{m}}^{\rm{3}}}\)).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Số nghiệm của phương trình \[\log \left( {2x - 1} \right) = \log \left( {{x^2} - 4} \right)\]     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay