Câu hỏi:

26/05/2025 103 Lưu

Cho hàm số y = x2 có đồ thị là (P). Đường thẳng đi qua hai điểm thuộc (P) có hoành độ bằng –1 và 2 là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cách 1. ⦁ Gọi (x; y) là tọa độ giao điểm (nếu có) của đường thẳng y = –x + 2 và parabol (P): y = x2, khi đó ta có:

y = x2 và y = –x + 2.

Suy ra x2 = –x + 2 hay x2 + x – 2 = 0 (*).

Phương trình (*) có ∆ = 12 – 4.1.(–2) = 9 > 0 và \(\sqrt \Delta = \sqrt 9 = 3.\)

Do đó phương trình (*) có hai nghiệm phân biệt là:

\({x_1} = \frac{{ - 1 - 3}}{{2 \cdot 1}} = - 2;\,\,{x_2} = \frac{{ - 1 + 3}}{{2 \cdot 1}} = 1.\)

Như vậy, đường thẳng y = –x + 2 cắt parabol (P): y = x2 tại hai điểm có hoành độ lần lượt là –2 và 1. Do đó phương án A không thỏa mãn yêu cầu đề bài.

⦁ Giải tương tự, ta có hai đường thẳng y = –x – 2 và y = x – 2 đều không cắt parabol (P): y = x2 nên không thỏa mãn yêu cầu đề bài.

⦁ Gọi (x; y) là tọa độ giao điểm (nếu có) của đường thẳng y = x + 2 và parabol (P): y = x2, khi đó ta có:

y = x2 và y = x + 2.

Suy ra x2 = x + 2 hay x2 – x – 2 = 0 (*).

Phương trình (*) có ∆ = (–1)2 – 4.1.(–2) = 9 > 0 và \(\sqrt \Delta = \sqrt 9 = 3.\)

Do đó phương trình (*) có hai nghiệm phân biệt là:

\({x_1} = \frac{{ - \left( { - 1} \right) - 3}}{{2 \cdot 1}} = - 1;\,\,{x_2} = \frac{{ - \left( { - 1} \right) + 3}}{{2 \cdot 1}} = 2.\)

Như vậy, đường thẳng y = x + 2 cắt parabol (P): y = x2 tại hai điểm có hoành độ lần lượt là –1 và 2. Do đó phương án B thỏa mãn yêu cầu đề bài.

Vậy ta chọn phương án B.

Cách 2. Thay x = –1 vào hàm số y = x2, ta được: y = (–1)2 = 1.

Thay x = 2 vào hàm số y = x2, ta được: y = 22 = 4.

Do đó, đường thẳng (d) cần tìm cắt parabol (P): y = x2 tại hai điểm phân biệt (–1; 1) và (2; 4).

Giả sử đường thẳng (d) cần tìm là đồ thị của hàm số y = ax + b.

Thay x = –1 và y = 1 vào hàm số trên, ta được: 1 = a.(–1) + b hay –a + b = 1.

Thay x = 2 và y = 4 vào hàm số trên, ta được: 4 = a.2 + b hay 2a + b = 4.

Ta có hệ phương trình: \(\left\{ \begin{array}{l} - a + b = 1\\2a + b = 4\end{array} \right..\)

Giải hệ phương trình trên bằng máy tính cầm tay ta được nghiệm là (a; b) = (1; 2).

Vậy đường thẳng (d) cần tìm có hàm số là: y = x + 2. Ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Nếu phương trình ax2 – bx – c = 0 có nghiệm kép thì (d) tiếp xúc với (P).

Câu 2

Lời giải

Đáp án đúng là: C

⦁ Gọi (x; y) là tọa độ giao điểm (nếu có) của đường thẳng (d): y = 2x + 1 và parabol (P): y = x2, khi đó ta có:

y = x2 và y = 2x + 1.

Suy ra x2 = 2x + 1 hay x2 – 2x – 1 = 0 (*).

Phương trình (*) có ∆' = (–1)2 – 1.(–1) = 2 > 0.

Do đó phương trình (*) có hai nghiệm phân biệt.

Như vậy đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt. Do đó phương án A không thỏa mãn yêu cầu đề bài.

⦁ Tương tự như trên, ta có các đường thẳng y = 2x và y = 2x + 3 cũng cắt parabol (P): y = x2 tại hai điểm phân biệt.

⦁ Gọi (x; y) là tọa độ giao điểm (nếu có) của đường thẳng (d): y = 2x – 3 và parabol (P): y = x2, khi đó ta có:

y = x2 và y = 2x – 3.

Suy ra x2 = 2x – 3 hay x2 – 2x + 3 = 0 (*).

Phương trình (*) có ∆' = (–1)2 – 1.3 = –2 < 0.

Do đó phương trình (*) vô nghiệm nên đường thẳng (d) không cắt parabol (P): y = x2, tức là hai đồ thị hàm số này không có điểm chung.

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP