Câu hỏi:

26/05/2025 66

Cho phương trình x2 + (m + 2)x – m – 4 = 0 (với m là tham số). Giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x1 < 0 ≤ x2</>

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Xét phương trình x2 + (m + 2)x – m – 4 = 0 là phương trình bậc hai ẩn x có:

∆ = (m + 2)2 – 4.1.(– m – 4) = m2 + 4m + 4 + 4m + 16

   = m2 + 8m + 20 = (m + 4)2 + 4 > 0 với mọi m.

Do đó phương phương trình có hai nghiệm phân biệt x1, x2 với mọi m.

Trường hợp 1. x2 = 0 thay vào phương trình đã cho ta được:                              

02 + (m + 2).0 – m – 4 = 0, suy ra m = –4.

Thay m = –4 vào phương trình đã cho ta được:

x2 + (–4 + 2)x – (–4) – 4 = 0

x2 – 2x = 0

x(x – 2) = 0

x = 0 hoặc x – 2 = 0

x = 0 hoặc x = 2.

Khi đó x1 = 2, x2 = 0 không thỏa mãn x1 < 0 ≤ x2.

Trường hợp 2. x1 < 0 < x2 thì x1x2 < 0 tức là \[\frac{{ - m - 4}}{1} < 0,\] suy ra m > –4.

Kết hợp hai trường hợp ta được m > –4.

Vậy ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình x2 – (2m – 3)x + m2 – 3m = 0 (với m là tham số). Giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn 1 < x1 < x2 < 6 là

Xem đáp án » 26/05/2025 51

Câu 2:

Giá trị của m để phương trình mx2 – 2(m – 2)x + 3(m – 2) = 0 (với m là tham số) có hai nghiệm phân biệt cùng dấu là

Xem đáp án » 26/05/2025 50

Câu 3:

Giá trị của m để phương trình 2x2 + (2m – 1)x + m – 1 = 0 (với m là tham số) có hai nghiệm bằng nhau về giá trị tuyệt đối nhưng trái dấu nhau là

Xem đáp án » 26/05/2025 31

Câu 4:

Số các giá trị nguyên của m để phương trình x2 – 6x + 2m + 1 = 0 (với m là tham số) có hai nghiệm dương phân biệt là

Xem đáp án » 26/05/2025 30

Câu 5:

Cho phương trình x2 + (3m – 1)x + m2 = 0 (với m là tham số). Giá trị nguyên dương nhỏ nhất của m để phương trình có hai nghiệm âm phân biệt là

Xem đáp án » 26/05/2025 22

Câu 6:

Cho phương trình x2 – (m – 3)x – m + 2 = 0 (với m là tham số). Giá trị của m để phương trình trên có ít nhất một nghiệm không âm là

Xem đáp án » 26/05/2025 22
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay