Câu hỏi:
26/05/2025 86Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – m – 5 (với m là tham số). Có bao nhiêu giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 là độ dài hai cạnh của tam giác vuông có đường chéo là \(\sqrt {10} ?\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:
x2 = 2(m – 1)x – m – 5 hay x2 – 2(m – 1)x + m + 5 = 0. (*)
Phương trình (*) có:
∆' = [–(m – 1)]2 – 1.(m + 5) = m2 – 2m + 1 – m – 5 = m2 – 3m – 4.
Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thì phương trình (*) phải có hai nghiệm phân biệt x1, x2, tức là ∆' > 0, hay m2 – 3m – 4 > 0.
Giải bất phương trình:
m2 – 3m – 4 > 0
m2 – 4m + m – 4 > 0
m(m – 4) + (m – 4) > 0
(m – 4)(m + 1) > 0
⦁ Trường hợp 1. m – 4 > 0 và m + 1 > 0
Suy ra m > 4 và m > –1
Do đó m > 4.
⦁ Trường hợp 2. m – 4 < 0 và m + 1 < 0
Suy ra m < 4 và m < –1
Do đó m < –1.
Như vậy, với m < –1 hoặc m > 4 thì đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2.>
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = m + 5\end{array} \right..\)
Để x1, x2 là độ dài hai cạnh của một tam giác thì: x1 > 0 và x2 > 0.
Khi đó \(\left\{ \begin{array}{l}{x_1} + {x_2} > 0\\{x_1}{x_2} > 0\end{array} \right.,\) suy ra \(\left\{ \begin{array}{l}2\left( {m - 1} \right) > 0\\m + 5 > 0\end{array} \right.\) do đó \(\left\{ \begin{array}{l}m > 1\\m > - 5\end{array} \right.\) nên m > 1.
Kết hợp các điều kiện tìm được ở trên, ta có: m > 4.
Do x1, x2 là độ dài hai cạnh của tam giác vuông có đường chéo là \(\sqrt {10} \) nên áp dụng định lí Pythagore ta có:
\(x_1^2 + x_2^2 = 10\)
(x1 + x2)2 – 2x1x2 = 10
[2(m – 1)]2 – 2.(m + 5) = 10
4m2 – 8m + 4 – 2m – 10 = 10
4m2 – 10m – 16 = 0
2m2 – 5m – 8 = 0
Phương trình trên có ∆m = (–5)2 – 4.2.(–8) = 89 > 0.
Do đó phương trình trên có hai nghiệm phân biệt là:
\({m_1} = \frac{{5 + \sqrt {89} }}{4};\,\,{m_2} = \frac{{5 - \sqrt {89} }}{4}.\)
Kết hợp điều kiện m > 4, ta thấy cả hai giá trị m tìm được ở trên đều không thỏa mãn.
Vậy không có giá trị nào của m thỏa mãn yêu cầu đề bài.
>>>Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + m + 1 (với m là tham số). Giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt nằm bên trái trục tung là
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – 2m + 3 (với m là tham số). Có bao nhiêu giá trị nguyên của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt thỏa mãn tổng tung độ hai giao điểm không vượt quá 9?
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = (m + 2)x + 3 (với m là tham số). Có bao nhiêu giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có các hoành độ là các số nguyên?
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = −2(m – 2)x + m2 (với m là tham số). Giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ là (x1; y1) và (x2; y2) với x1 < x2>
thỏa mãn |x1| – |x2| = 6 làCâu 5:
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = (m – 2)x + 3m (với m là tham số). Giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt nằm ở hai phía trục tung là
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 4 (với m là tham số). Có bao nhiêu giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = - 3?\)
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận