Câu hỏi:

26/05/2025 228 Lưu

Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – m – 5 (với m là tham số). Có bao nhiêu giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 là độ dài hai cạnh của tam giác vuông có đường chéo là \(\sqrt {10} ?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:

x2 = 2(m – 1)x – m – 5 hay x2 – 2(m – 1)x + m + 5 = 0. (*)

Phương trình (*) có:

∆' = [–(m – 1)]2 – 1.(m + 5) = m2 – 2m + 1 – m – 5 = m2 – 3m – 4.

Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thì phương trình (*) phải có hai nghiệm phân biệt x1, x2, tức là ∆' > 0, hay m2 – 3m – 4 > 0.

Giải bất phương trình:

m2 – 3m – 4 > 0

m2 – 4m + m – 4 > 0

m(m – 4) + (m – 4) > 0

(m – 4)(m + 1) > 0

Trường hợp 1. m – 4 > 0 và m + 1 > 0

Suy ra m > 4 và m > –1

Do đó m > 4.

Trường hợp 2. m – 4 < 0 và m + 1 < 0

Suy ra m < 4 và m < –1

Do đó m < –1.

Như vậy, với m < –1 hoặc m > 4 thì đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2.

Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = m + 5\end{array} \right..\)

Để x1, x2 là độ dài hai cạnh của một tam giác thì: x1 > 0 và x2 > 0.

Khi đó \(\left\{ \begin{array}{l}{x_1} + {x_2} > 0\\{x_1}{x_2} > 0\end{array} \right.,\) suy ra \(\left\{ \begin{array}{l}2\left( {m - 1} \right) > 0\\m + 5 > 0\end{array} \right.\) do đó \(\left\{ \begin{array}{l}m > 1\\m > - 5\end{array} \right.\) nên m > 1.

Kết hợp các điều kiện tìm được ở trên, ta có: m > 4.

Do x1, x2 là độ dài hai cạnh của tam giác vuông có đường chéo là \(\sqrt {10} \) nên áp dụng định lí Pythagore ta có:

\(x_1^2 + x_2^2 = 10\)

(x1 + x2)2 – 2x1x2 = 10

[2(m – 1)]2 – 2.(m + 5) = 10

4m2 – 8m + 4 – 2m – 10 = 10

4m2 – 10m – 16 = 0

2m2 – 5m – 8 = 0

Phương trình trên có ∆m = (–5)2 – 4.2.(–8) = 89 > 0.

Do đó phương trình trên có hai nghiệm phân biệt là:

\({m_1} = \frac{{5 + \sqrt {89} }}{4};\,\,{m_2} = \frac{{5 - \sqrt {89} }}{4}.\)

Kết hợp điều kiện m > 4, ta thấy cả hai giá trị m tìm được ở trên đều không thỏa mãn.

Vậy không có giá trị nào của m thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:

x2 = 2mx – 2m + 3 hay x2 − 2mx + 2m – 3 = 0. (*)

Phương trình (*) có:

∆' = (−m)2 – 1.(2m – 3) = m2 – 2m + 3 = (m – 1)2 + 2 > 0, với mọi m.

Do đó phương trình (*) luôn có hai nghiệm x1, x2 phân biệt, hay đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1); (x2; y2).

Khi đó, ta có: \[{y_1} = x_1^2;\,\,{y_2} = x_2^2.\]

Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2}\; = 2m\\{x_1}{x_2} = 2m - 3\end{array} \right..\)

Theo bài, tung độ hai giao điểm không vượt quá 9 tức là y1 + y2 ≤ 9, suy ra \[x_1^2 + x_2^2 \le 9\]

Ta có:

\[x_1^2 + x_2^2 \le 9\]

(x1 + x2)2 – 2x1x2 ≤ 9

(2m)2 – 2.(2m – 3) ≤ 9

4m2 – 4m – 3 ≤ 0

(4m2 – 6m) + (2m – 3) ≤ 0

2m(2m – 3) + (2m – 3) ≤ 0

(2m – 3)(2m + 1) ≤ 0

2m – 3 ≤ 0 và 2m + 1 ≥ 0 (do 2m – 3 < 2m + 1).

\(m \le \frac{3}{2}\) và \(m \ge - \frac{1}{2}\)

\( - \frac{1}{2} \le m \le \frac{3}{2}\)

Mà m là số nguyên nên m ∈ {0; 1}.

Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

Lời giải

Đáp án đúng là: C

Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:

x2 = (m + 2)x + 3 hay x2 – (m + 2)x – 3 = 0. (*)

Phương trình (*) có:

∆ = [–(m + 2)]2 – 4.1.(–3) = (m + 2)2 + 12 > 0 với mọi m.

Do đó phương trình (*) luôn có 2 nghiệm phân biệt x1, x2 nên đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2.

Theo định lí Viète ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 2\\{x_1}{x_2} = - 3.\end{array} \right.\)

Theo bài, x1 ∈ ℤ, x2 ∈ ℤ nên x1, x2 ∈ Ư(–3) = {1; –1; 3; –3}.

Ta có bảng sau:

x1

1

–1

3

–3

x2

–3

3

–1

1

m + 2 = x1 + x2

–2

2

2

–2

m

–4

0

0

–4

Từ bảng, ta có: m ∈ {0; –4}.

Vậy có hai giá trị của m thỏa mãn yêu cầu đề bài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP