Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – m – 5 (với m là tham số). Có bao nhiêu giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 là độ dài hai cạnh của tam giác vuông có đường chéo là \(\sqrt {10} ?\)
A. 0.
B. 1.
C. 2.
D. 3.
Quảng cáo
Trả lời:

Đáp án đúng là: A
Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:
x2 = 2(m – 1)x – m – 5 hay x2 – 2(m – 1)x + m + 5 = 0. (*)
Phương trình (*) có:
∆' = [–(m – 1)]2 – 1.(m + 5) = m2 – 2m + 1 – m – 5 = m2 – 3m – 4.
Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thì phương trình (*) phải có hai nghiệm phân biệt x1, x2, tức là ∆' > 0, hay m2 – 3m – 4 > 0.
Giải bất phương trình:
m2 – 3m – 4 > 0
m2 – 4m + m – 4 > 0
m(m – 4) + (m – 4) > 0
(m – 4)(m + 1) > 0
⦁ Trường hợp 1. m – 4 > 0 và m + 1 > 0
Suy ra m > 4 và m > –1
Do đó m > 4.
⦁ Trường hợp 2. m – 4 < 0 và m + 1 < 0
Suy ra m < 4 và m < –1
Do đó m < –1.
Như vậy, với m < –1 hoặc m > 4 thì đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2.>
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = m + 5\end{array} \right..\)
Để x1, x2 là độ dài hai cạnh của một tam giác thì: x1 > 0 và x2 > 0.
Khi đó \(\left\{ \begin{array}{l}{x_1} + {x_2} > 0\\{x_1}{x_2} > 0\end{array} \right.,\) suy ra \(\left\{ \begin{array}{l}2\left( {m - 1} \right) > 0\\m + 5 > 0\end{array} \right.\) do đó \(\left\{ \begin{array}{l}m > 1\\m > - 5\end{array} \right.\) nên m > 1.
Kết hợp các điều kiện tìm được ở trên, ta có: m > 4.
Do x1, x2 là độ dài hai cạnh của tam giác vuông có đường chéo là \(\sqrt {10} \) nên áp dụng định lí Pythagore ta có:
\(x_1^2 + x_2^2 = 10\)
(x1 + x2)2 – 2x1x2 = 10
[2(m – 1)]2 – 2.(m + 5) = 10
4m2 – 8m + 4 – 2m – 10 = 10
4m2 – 10m – 16 = 0
2m2 – 5m – 8 = 0
Phương trình trên có ∆m = (–5)2 – 4.2.(–8) = 89 > 0.
Do đó phương trình trên có hai nghiệm phân biệt là:
\({m_1} = \frac{{5 + \sqrt {89} }}{4};\,\,{m_2} = \frac{{5 - \sqrt {89} }}{4}.\)
Kết hợp điều kiện m > 4, ta thấy cả hai giá trị m tìm được ở trên đều không thỏa mãn.
Vậy không có giá trị nào của m thỏa mãn yêu cầu đề bài.
>>>Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. m = –1.
B. m = 1.
C. m = –5.
D. m = 5.
Lời giải
Đáp án đúng là: D
Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:
x2 = −2(m – 2)x + m2 hay x2 + 2(m – 2)x – m2 = 0. (*)
Phương trình (*) có:
∆' = (m – 2)2 – 1.(–m2) = m2 – 4m + 4 + m2
= 2m2 – 4m + 4 = 2(m – 1)2 + 2 > 0 với mọi m.
Do đó phương trình (*) luôn có hai nghiệm phân biệt x1, x2 nên đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có tọa độ là (x1; y1) và (x2; y2).
Theo định lí Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = - 2\left( {m - 2} \right)\\{x_1}{x_2} = - {m^2}\end{array} \right..\]
Mà –m2 ≤ 0 với mọi m, nên x1x2 ≤ 0.
Lại có x1 < x2>
(theo đề bài) nên x1 ≤ 0 và x2 ≥ 0.Do đó |x1| = –x1; |x2| = x2.
Khi đó: |x1| – |x2| = –x1 – x2 = –(x1 + x2).
Theo bài, |x1| – |x2| = 6 nên –(x1 + x2) = 6
Suy ra 2(m – 2) = 6 nên m – 2 = 3, do đó m = 5.
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: C
Gọi (x; y) là tọa độ giao điểm của đường thẳng (d) và parabol (P) nếu có. Khi đó, ta có:
x2 = 2mx – 2m + 3 hay x2 − 2mx + 2m – 3 = 0. (*)
Phương trình (*) có:
∆' = (−m)2 – 1.(2m – 3) = m2 – 2m + 3 = (m – 1)2 + 2 > 0, với mọi m.
Do đó phương trình (*) luôn có hai nghiệm x1, x2 phân biệt, hay đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1); (x2; y2).
Khi đó, ta có: \[{y_1} = x_1^2;\,\,{y_2} = x_2^2.\]
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2}\; = 2m\\{x_1}{x_2} = 2m - 3\end{array} \right..\)
Theo bài, tung độ hai giao điểm không vượt quá 9 tức là y1 + y2 ≤ 9, suy ra \[x_1^2 + x_2^2 \le 9\]
Ta có:
\[x_1^2 + x_2^2 \le 9\]
(x1 + x2)2 – 2x1x2 ≤ 9
(2m)2 – 2.(2m – 3) ≤ 9
4m2 – 4m – 3 ≤ 0
(4m2 – 6m) + (2m – 3) ≤ 0
2m(2m – 3) + (2m – 3) ≤ 0
(2m – 3)(2m + 1) ≤ 0
2m – 3 ≤ 0 và 2m + 1 ≥ 0 (do 2m – 3 < 2m + 1).
\(m \le \frac{3}{2}\) và \(m \ge - \frac{1}{2}\)
\( - \frac{1}{2} \le m \le \frac{3}{2}\)
Mà m là số nguyên nên m ∈ {0; 1}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
>Câu 3
A. m < 0 và m ≠ –2.
>B. m < –1 và m ≠ –2.
>C. m > –1.
D. m ≥ –2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.