Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\) và \(AB = a\sqrt 2 \). Biết \(SA \bot \left( {ABC} \right)\) và \(SA = a\). Góc nhị diện \(\left[ {S,BC,A} \right]\)
Quảng cáo
Trả lời:
B
Kẻ \(AM \bot BC\) tại \(M\) mà BC ^ SA nên BC ^ (SAM) Þ BC ^ SM.
Suy ra \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {S,BC,A} \right]\).
Tam giác ABC vuông cân tại A nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2} + 2{a^2}} = 2a\) Þ \(AM = \frac{{BC}}{2} = a\).
Ta có \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A
Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.
Vì \(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).
Lời giải
a) Hình lập phương có 6 mặt đều là hình vuông nên AA' ^ AB và AA' ^ AD Þ AA' ^ (ABCD).
b) Ta có AC // A'C' mà A'C' ^ B'D' Þ AC ^ B'D'.
c) Có CD // AB Þ (BA', CD) = (BA', BA) = \(\widehat {ABA'} = 45^\circ \) (do ABB'A' là hình vuông).
d) Hình chiếu vuông góc của tam giác A'BC' lên mặt phẳng (ABCD) là tam giác ABC.
Diện tích hình vuông ABCD là a2 suy ra diện tích tam giác ABC là \(\frac{{{a^2}}}{2}\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.