Câu hỏi:

31/05/2025 102

Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B có \(AC = a\sqrt 3 \), cạnh bên AA' = 3a. Góc giữa đường thẳng A'C và mặt phẳng (ABC) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Góc giữa đường thẳng A'C và mặt phẳng (ABC) bằng bao nhiêu độ? (ảnh 1)

Ta có hình chiếu của A'C lên (ABC) là AC.

Nên (A'C, (ABC)) = (A'C, AC) = \(\widehat {A'CA}\).

Ta có \(\tan \widehat {A'CA} = \frac{{A'A}}{{AC}} = \frac{{3a}}{{a\sqrt 3 }} = \sqrt 3 \Rightarrow \widehat {A'CA} = 60^\circ \).

Do vậy (A'C, (ABC)) = 60°.

Trả lời: 60.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

B

B (ảnh 1)

Kẻ \(AM \bot BC\) tại \(M\) mà BC ^ SA nên BC ^ (SAM) Þ BC ^ SM.

Suy ra \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {S,BC,A} \right]\).

Tam giác ABC vuông cân tại A nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2} + 2{a^2}} = 2a\) Þ \(AM = \frac{{BC}}{2} = a\).

Ta có \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).

Lời giải

Trong mặt phẳng (A'B'C'D'), kẻ  A'H ^ B'D' tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{B'D' \bot A'H}\\{B'D' \bot AA'\left( {{\rm{do }}AA' \bot \left( {A'B'C'D'} \right)} \right)}\end{array} \Rightarrow B'D' \bot \left( {AA'H} \right) \Rightarrow B'D' \bot AH} \right.\).

Do đó \(\widehat {AHA'}\) là góc phẳng nhị diện \(\left[ {A,B'D',A'} \right]\).

Tìm góc phẳng nhị diện [A, B'D', A'] (tính theo độ, làm tròn kết quả đến hàng phần mười). (ảnh 2)

Tam giác A'B'D' vuông tại A' có đường cao A'H nên

\(\frac{1}{{A'{H^2}}} = \frac{1}{{A'{{B'}^2}}} + \frac{1}{{A'{{D'}^2}}} \Rightarrow A'H = \frac{{A'B' \cdot A'D'}}{{\sqrt {A'{{B'}^2} + A'{{D'}^2}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)

Tam giác \(AHA'\) vuông tại \(A'\) có:

\(\tan \widehat {AHA'} = \frac{{AA'}}{{A'H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AHA'} \approx 51,1^\circ \).

Trả lời: 51,1.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP