Câu hỏi:

31/05/2025 124 Lưu

Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B có \(AC = a\sqrt 3 \), cạnh bên AA' = 3a. Góc giữa đường thẳng A'C và mặt phẳng (ABC) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Góc giữa đường thẳng A'C và mặt phẳng (ABC) bằng bao nhiêu độ? (ảnh 1)

Ta có hình chiếu của A'C lên (ABC) là AC.

Nên (A'C, (ABC)) = (A'C, AC) = \(\widehat {A'CA}\).

Ta có \(\tan \widehat {A'CA} = \frac{{A'A}}{{AC}} = \frac{{3a}}{{a\sqrt 3 }} = \sqrt 3 \Rightarrow \widehat {A'CA} = 60^\circ \).

Do vậy (A'C, (ABC)) = 60°.

Trả lời: 60.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

Góc giữa (SBD) và (ABCD) là (ảnh 1)

Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.

\(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).

Lời giải

B

B (ảnh 1)

Kẻ \(AM \bot BC\) tại \(M\) mà BC ^ SA nên BC ^ (SAM) Þ BC ^ SM.

Suy ra \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {S,BC,A} \right]\).

Tam giác ABC vuông cân tại A nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2} + 2{a^2}} = 2a\) Þ \(AM = \frac{{BC}}{2} = a\).

Ta có \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP