Câu hỏi:

19/08/2025 477 Lưu

Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng \(8,2\;cm\) và đáy của nó có hai kích thước là \(8,5\;cm;10,5\;cm\) (xem hình vẽ sau). Tìm góc phẳng nhị diện [A, B'D', A'] (tính theo độ, làm tròn kết quả đến hàng phần mười).

Tìm góc phẳng nhị diện [A, B'D', A'] (tính theo độ, làm tròn kết quả đến hàng phần mười). (ảnh 1)


Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trong mặt phẳng (A'B'C'D'), kẻ  A'H ^ B'D' tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{B'D' \bot A'H}\\{B'D' \bot AA'\left( {{\rm{do }}AA' \bot \left( {A'B'C'D'} \right)} \right)}\end{array} \Rightarrow B'D' \bot \left( {AA'H} \right) \Rightarrow B'D' \bot AH} \right.\).

Do đó \(\widehat {AHA'}\) là góc phẳng nhị diện \(\left[ {A,B'D',A'} \right]\).

Tìm góc phẳng nhị diện [A, B'D', A'] (tính theo độ, làm tròn kết quả đến hàng phần mười). (ảnh 2)

Tam giác A'B'D' vuông tại A' có đường cao A'H nên

\(\frac{1}{{A'{H^2}}} = \frac{1}{{A'{{B'}^2}}} + \frac{1}{{A'{{D'}^2}}} \Rightarrow A'H = \frac{{A'B' \cdot A'D'}}{{\sqrt {A'{{B'}^2} + A'{{D'}^2}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)

Tam giác \(AHA'\) vuông tại \(A'\) có:

\(\tan \widehat {AHA'} = \frac{{AA'}}{{A'H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AHA'} \approx 51,1^\circ \).

Trả lời: 51,1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat {SOA}\).                                      
B. \(\widehat {SBA}\).                            
C. \(\widehat {SDA}\). 
D. \(\widehat {SOC}\).

Lời giải

A

Góc giữa (SBD) và (ABCD) là (ảnh 1)

Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.

\(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).

Lời giải

Tổng diện tích tất cả các mặt của khối gỗ đó đạt bao nhiêu cm2? Kết quả làm tròn đến hàng đơn vị. (ảnh 1)

Ta có \[\left\{ \begin{array}{l}BC = \left( {BCD'A'} \right) \cap \left( {ABCD} \right)\\BC \bot AB\\BC \bot A'B\left( {BC \bot \left( {ABB'A'} \right)} \right)\end{array} \right.\]Þ ((BCD'A'), (ABCD)) = (AB, A'B) = \(\widehat {ABA'} = 30^\circ \).

Tam giác A'AB vuông tại A có \(\tan \widehat {ABA'} = \frac{{AA'}}{{AB}} \Rightarrow AA' = \frac{{10\sqrt 3 }}{3}\) cm.

Tổng diện tích của sáu mặt khối gỗ là: \(2\left( {10.15 + 10.\frac{{10\sqrt 3 }}{3} + 15.\frac{{10\sqrt 3 }}{3}} \right) \approx 589\) cm2.

Trả lời: 589.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP