Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm \(SC\). Tính góc phẳng nhị diện \([M,BD,A]\)?
Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm \(SC\). Tính góc phẳng nhị diện \([M,BD,A]\)?
Quảng cáo
Trả lời:
Gọi O là tâm của hình vuông ABCD Þ SO ^ (ABCD) Þ SO ^ BD.
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot AC}\\{BD \bot SO}\end{array} \Rightarrow BD \bot (SAC) \Rightarrow BD \bot OM} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(MBD) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (MBD),MO \bot BD \Rightarrow [M,BD,A] = \widehat {MOA}}\\{{\mathop{\rm Trong}\nolimits} (ABD),AO \bot BD}\end{array}} \right.\)
Xét \(\Delta MOC\) có: \(OM = MC = \frac{a}{2},OC = \frac{{a\sqrt 2 }}{2}\)
nên \(\Delta MOC\) vuông cân tại \(M\) \( \Rightarrow \widehat {MOC} = 45^\circ \Rightarrow \widehat {MOA} = 135^\circ \).
Trả lời: 135.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Kẻ \(AM \bot BC\) tại \(M\) mà BC ^ SA nên BC ^ (SAM) Þ BC ^ SM.
Suy ra \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {S,BC,A} \right]\).
Tam giác ABC vuông cân tại A nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2} + 2{a^2}} = 2a\) Þ \(AM = \frac{{BC}}{2} = a\).
Ta có \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).
Lời giải
A
Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.
Vì \(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.