Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm \(SC\). Tính góc phẳng nhị diện \([M,BD,A]\)?
Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm \(SC\). Tính góc phẳng nhị diện \([M,BD,A]\)?
Quảng cáo
Trả lời:

Gọi O là tâm của hình vuông ABCD Þ SO ^ (ABCD) Þ SO ^ BD.
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot AC}\\{BD \bot SO}\end{array} \Rightarrow BD \bot (SAC) \Rightarrow BD \bot OM} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(MBD) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (MBD),MO \bot BD \Rightarrow [M,BD,A] = \widehat {MOA}}\\{{\mathop{\rm Trong}\nolimits} (ABD),AO \bot BD}\end{array}} \right.\)
Xét \(\Delta MOC\) có: \(OM = MC = \frac{a}{2},OC = \frac{{a\sqrt 2 }}{2}\)
nên \(\Delta MOC\) vuông cân tại \(M\) \( \Rightarrow \widehat {MOC} = 45^\circ \Rightarrow \widehat {MOA} = 135^\circ \).
Trả lời: 135.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
A

Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.
Vì \(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).
Lời giải

Ta có \[\left\{ \begin{array}{l}BC = \left( {BCD'A'} \right) \cap \left( {ABCD} \right)\\BC \bot AB\\BC \bot A'B\left( {BC \bot \left( {ABB'A'} \right)} \right)\end{array} \right.\]Þ ((BCD'A'), (ABCD)) = (AB, A'B) = \(\widehat {ABA'} = 30^\circ \).
Tam giác A'AB vuông tại A có \(\tan \widehat {ABA'} = \frac{{AA'}}{{AB}} \Rightarrow AA' = \frac{{10\sqrt 3 }}{3}\) cm.
Tổng diện tích của sáu mặt khối gỗ là: \(2\left( {10.15 + 10.\frac{{10\sqrt 3 }}{3} + 15.\frac{{10\sqrt 3 }}{3}} \right) \approx 589\) cm2.
Trả lời: 589.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Tìm góc phẳng nhị diện [A, B'D', A'] (tính theo độ, làm tròn kết quả đến hàng phần mười). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/05/31-1748661368.png)