Câu hỏi:

31/05/2025 103 Lưu

Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm \(SC\). Tính góc phẳng nhị diện \([M,BD,A]\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

v (ảnh 1)

Gọi O là tâm của hình vuông ABCD Þ SO ^ (ABCD) Þ SO ^ BD.

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot AC}\\{BD \bot SO}\end{array} \Rightarrow BD \bot (SAC) \Rightarrow BD \bot OM} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(MBD) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (MBD),MO \bot BD \Rightarrow [M,BD,A] = \widehat {MOA}}\\{{\mathop{\rm Trong}\nolimits} (ABD),AO \bot BD}\end{array}} \right.\)

Xét \(\Delta MOC\) có: \(OM = MC = \frac{a}{2},OC = \frac{{a\sqrt 2 }}{2}\)

nên \(\Delta MOC\) vuông cân tại \(M\) \( \Rightarrow \widehat {MOC} = 45^\circ \Rightarrow \widehat {MOA} = 135^\circ \).

Trả lời: 135.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

B

B (ảnh 1)

Kẻ \(AM \bot BC\) tại \(M\) mà BC ^ SA nên BC ^ (SAM) Þ BC ^ SM.

Suy ra \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {S,BC,A} \right]\).

Tam giác ABC vuông cân tại A nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2} + 2{a^2}} = 2a\) Þ \(AM = \frac{{BC}}{2} = a\).

Ta có \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).

Câu 2

Lời giải

A

Góc giữa (SBD) và (ABCD) là (ảnh 1)

Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.

\(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP