PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Có 3 số \[4 - 2x;\,\;{x^2};\;4 + 2x\] \[\left( {x > 0} \right)\] theo thứ tự lập thành một cấp số cộng.
a) \[4 - 2x = \frac{{{x^2} + 4x + 2}}{2}\].
b) Giá trị của \[x\] bằng \[2\].
c) Công sai của cấp số cộng là \[2\].
d) Số hạng tổng quát của cấp số cộng là \[{u_n} = 4n - 4\].
PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Có 3 số \[4 - 2x;\,\;{x^2};\;4 + 2x\] \[\left( {x > 0} \right)\] theo thứ tự lập thành một cấp số cộng.
a) \[4 - 2x = \frac{{{x^2} + 4x + 2}}{2}\].
b) Giá trị của \[x\] bằng \[2\].
c) Công sai của cấp số cộng là \[2\].
d) Số hạng tổng quát của cấp số cộng là \[{u_n} = 4n - 4\].
Quảng cáo
Trả lời:
Ba số \[4 - 2x;\,\;{x^2};\;4 + 2x\] theo thứ tự lập thành một cấp số cộng khi và chỉ khi
\[4 - 2x + 4 + 2x = 2{x^2} \Leftrightarrow 8 = 2{x^2} \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\].
Vì \(x > 0\) nên \(x = 2\).
Khi đó, cấp số cộng là \(0\,;\,4\,;\,8\) nên công sai của cấp số cộng là 4.
Số hạng tổng quát của cấp số cộng là \[{u_n} = {u_1} + \left( {n - 1} \right)d = 0 + \left( {n - 1} \right)4 = 4n - 4\].
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng công thức số hạng tổng quát của cấp số cộng ta có \({u_n} = 3 + 7\left( {n - 1} \right) = 7n - 4\).
Ta có \({u_n} > 2023 \Leftrightarrow 7n - 4 > 2023 \Leftrightarrow n > \frac{{2027}}{7} \approx 289,6\).
Suy ra, kể từ số hạng thứ \(290\) thì các số hạng của \(\left( {{u_n}} \right)\) đều lớn hơn \(2023\). Chọn D.
Lời giải
Ta có \({u_2} = {\left( {\frac{a}{2} + \frac{2}{a}} \right)^2} - 2 \cdot \frac{a}{2} \cdot \frac{2}{a} = u_1^2 - 2\);
\({u_3} = {\left( {\frac{a}{2}} \right)^3} + {\left( {\frac{2}{a}} \right)^3} = {\left( {\frac{a}{2} + \frac{2}{a}} \right)^3} - 3 \cdot \frac{a}{2} \cdot \frac{2}{a}\left( {\frac{a}{2} + \frac{2}{a}} \right) = u_1^3 - 3{u_1}\).
Vì \({u_1}\,;\,{u_2}\,;\,{u_3}\) theo thứ tự lập thành một cấp số cộng nên ta có
\[2{u_2} = {u_1} + {u_3} \Leftrightarrow 2\left( {u_1^2 - 2} \right) = {u_1} + u_1^3 - 3{u_1} \Leftrightarrow u_1^3 - 2u_1^2 - 2{u_1} + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{u_1} = 2\,\,\,\,\,\,\,}\\{{u_1} = \sqrt 2 \,\,\,}\\{{u_1} = - \sqrt 2 }\end{array}} \right.\].
* Với \({u_1} = 2 \Leftrightarrow \frac{a}{2} + \frac{2}{a} = 2 \Leftrightarrow {a^2} - 4a + 4 = 0 \Leftrightarrow a = 2\).
* Với \[{u_1} = \sqrt 2 \Leftrightarrow \frac{a}{2} + \frac{2}{a} = \sqrt 2 \Leftrightarrow {a^2} - 2\sqrt 2 a + 4 = 0\] (vô nghiệm).
* Với \({u_1} = - \sqrt 2 \Leftrightarrow \frac{a}{2} + \frac{2}{a} = - \sqrt 2 \Leftrightarrow {a^2} + 2\sqrt 2 a + 4 = 0\) (vô nghiệm).
Vậy \(a = 2\).
Đáp án: \(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.