Câu hỏi:

16/06/2025 11

PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Có 3 số \[4 - 2x;\,\;{x^2};\;4 + 2x\] \[\left( {x > 0} \right)\] theo thứ tự lập thành một cấp số cộng.

a) \[4 - 2x = \frac{{{x^2} + 4x + 2}}{2}\].

b) Giá trị của \[x\] bằng \[2\].

c) Công sai của cấp số cộng là \[2\].

d) Số hạng tổng quát của cấp số cộng là \[{u_n} = 4n - 4\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ba số \[4 - 2x;\,\;{x^2};\;4 + 2x\] theo thứ tự lập thành một cấp số cộng khi và chỉ khi

\[4 - 2x + 4 + 2x = 2{x^2} \Leftrightarrow 8 = 2{x^2} \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\].

\(x > 0\) nên \(x = 2\).

Khi đó, cấp số cộng\(0\,;\,4\,;\,8\) nên công sai của cấp số cộng là 4.

Số hạng tổng quát của cấp số cộng là \[{u_n} = {u_1} + \left( {n - 1} \right)d = 0 + \left( {n - 1} \right)4 = 4n - 4\].

Đáp án:           a) Sai,             b) Đúng,         c) Sai,              d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({u_2} = {\left( {\frac{a}{2} + \frac{2}{a}} \right)^2} - 2 \cdot \frac{a}{2} \cdot \frac{2}{a} = u_1^2 - 2\);

\({u_3} = {\left( {\frac{a}{2}} \right)^3} + {\left( {\frac{2}{a}} \right)^3} = {\left( {\frac{a}{2} + \frac{2}{a}} \right)^3} - 3 \cdot \frac{a}{2} \cdot \frac{2}{a}\left( {\frac{a}{2} + \frac{2}{a}} \right) = u_1^3 - 3{u_1}\).

\({u_1}\,;\,{u_2}\,;\,{u_3}\) theo thứ tự lập thành một cấp số cộng nên ta có

\[2{u_2} = {u_1} + {u_3} \Leftrightarrow 2\left( {u_1^2 - 2} \right) = {u_1} + u_1^3 - 3{u_1} \Leftrightarrow u_1^3 - 2u_1^2 - 2{u_1} + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{u_1} = 2\,\,\,\,\,\,\,}\\{{u_1} = \sqrt 2 \,\,\,}\\{{u_1} = - \sqrt 2 }\end{array}} \right.\].

* Với \({u_1} = 2 \Leftrightarrow \frac{a}{2} + \frac{2}{a} = 2 \Leftrightarrow {a^2} - 4a + 4 = 0 \Leftrightarrow a = 2\).

* Với \[{u_1} = \sqrt 2 \Leftrightarrow \frac{a}{2} + \frac{2}{a} = \sqrt 2 \Leftrightarrow {a^2} - 2\sqrt 2 a + 4 = 0\] (vô nghiệm).

* Với \({u_1} = - \sqrt 2 \Leftrightarrow \frac{a}{2} + \frac{2}{a} = - \sqrt 2 \Leftrightarrow {a^2} + 2\sqrt 2 a + 4 = 0\) (vô nghiệm).

Vậy \(a = 2\).

Đáp án: \(2\).

Câu 2

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 1\), công bội \(q = 4\). Tìm tổng \(7\) số hạng đầu của cấp số nhân đã cho. 

Lời giải

Tổng \(7\) số hạng đầu của cấp số nhân đã cho là

\({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{1 \cdot \left( {1 - {4^7}} \right)}}{{1 - 4}} = 5\,\,461\). Chọn C.

Câu 3

Cho cấp số cộng \[\left( {{u_n}} \right)\] có \[{u_1} = \frac{1}{4}\] và \[d =  - 2\]. Tính số hạng thứ \(3\) của cấp số cộng đó. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho cấp số nhân có các số hạng lần lượt là \(3;\,\,x;\,\,27;\,\, - 81;....\). Khi đó \[x\] bằng 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({S_1} = 2,\,{S_2} = 6\). Tìm \({u_5} - {u_3}\). 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay