Câu hỏi:

16/06/2025 12

Cho cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn \(\left\{ {\begin{array}{*{20}{l}}{{u_2} =  - 6}\\{{u_2} + {u_3} = 12}\end{array}} \right.\).

a) Số hạng \({u_3} = 18\).

b) Gọi \(q\) là công bội của cấp số nhân, thì ba số \(q\,;\,{u_1}\,;\,7\) tạo thành một cấp số cộng.

c) Số \(13\,122\) là số hạng thứ 11 của cấp số nhân.

d) Biết tổng \(S = {u_{11}} + {u_{12}} + ... + {u_{50}}\) bằng \(\frac{{a - {3^{50}}}}{2}\). Giá trị \(a\) là \(59\,049\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số hạng \({u_3} = 12 - {u_2} = 18\).

Ta có \(q = \frac{{{u_3}}}{{{u_2}}} = - 3;\,\,{u_1} = \frac{{{u_2}}}{q} = 2\).

Vậy ba số \(q\,;\,{u_1}\,;\,7\) tạo thành một cấp số cộng với công sai bằng 5.

Số hạng tổng quát của cấp số nhân \(\left( {{u_n}} \right)\)\({u_n} = 2 \cdot {\left( { - 3} \right)^{n - 1}}\).

Ta có \(13122 = 2.{\left( { - 3} \right)^{n - 1}} \Rightarrow {\left( { - 3} \right)^{n - 1}} = 6561 = {\left( { - 3} \right)^8} \Rightarrow n = 9\).

Vậy số \(13122\) là số hạng thứ 9 của cấp số nhân.

Ta có \({S_{50}} = {u_1} + {u_2} + ... + {u_{50}} = {u_1} \cdot \frac{{1 - {q^{50}}}}{{1 - q}} = \frac{{1 - {3^{50}}}}{2}\), \({S_{10}} = {u_1} + {u_2} + ... + {u_{10}} = \frac{{1 - {3^{10}}}}{2}\).

Khi đó \(S = {u_{11}} + {u_{12}} + ... + {u_{50}} = {S_{50}} - {S_{10}} = \frac{{{3^{10}} - {3^{50}}}}{2}\). Vậy \(a = {3^{10}} = 59049\).

Đáp án:           a) Đúng,          b) Đúng,         c) Sai,              d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo bài ra ta có \({u_1} = \frac{1}{2}\), \({u_4} = 32\)\({u_n} = 2048\).

\({u_4} = {u_1} \cdot {q^3}\) \( \Rightarrow 32 = \frac{1}{2} \cdot {q^3}\)\( \Rightarrow q = 4\).

\({u_n} = 2048\)\( \Rightarrow {u_1} \cdot \,{q^{n - 1}} = 2048\)\( \Rightarrow {4^{n - 1}} = {4^6}\)\( \Rightarrow n = 7\).

Khi đó tổng của cấp số nhân này là \({S_7} = \frac{{{u_1}\left( {1 - {q^7}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {4^7}} \right)}}{{1 - 4}} = \frac{{5461}}{2} = \frac{P}{2}\). Suy ra \(P = 5461\).

Đáp án: \(5461\).

Lời giải

Ba số \[4 - 2x;\,\;{x^2};\;4 + 2x\] theo thứ tự lập thành một cấp số cộng khi và chỉ khi

\[4 - 2x + 4 + 2x = 2{x^2} \Leftrightarrow 8 = 2{x^2} \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\].

\(x > 0\) nên \(x = 2\).

Khi đó, cấp số cộng\(0\,;\,4\,;\,8\) nên công sai của cấp số cộng là 4.

Số hạng tổng quát của cấp số cộng là \[{u_n} = {u_1} + \left( {n - 1} \right)d = 0 + \left( {n - 1} \right)4 = 4n - 4\].

Đáp án:           a) Sai,             b) Đúng,         c) Sai,              d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho cấp số cộng \[\left( {{u_n}} \right)\] có \[{u_1} = \frac{1}{4}\] và \[d =  - 2\]. Tính số hạng thứ \(3\) của cấp số cộng đó. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho cấp số nhân có các số hạng lần lượt là \(3;\,\,x;\,\,27;\,\, - 81;....\). Khi đó \[x\] bằng 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({S_1} = 2,\,{S_2} = 6\). Tìm \({u_5} - {u_3}\). 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay