Câu hỏi:

17/06/2025 58 Lưu

Biết đường thẳng \[y = x - 2\] cắt đồ thị hàm số \[y = \frac{{2x + 1}}{{x - 1}}\] tại hai điểm phân biệt \[A\] và \[B\] có hoành độ lần lượt là \[{x_A},{x_B}\]. Giá trị của biểu thức \[{x_A} + {x_B}\] bằng     

A. \[3\].                         
B. \[2\].                         
C. \[1\].                                   
D. \[5\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương trình hoành độ giao điểm \[x - 2 = \frac{{2x + 1}}{{x - 1}}\] (Điều kiện: \[x - 1 \ne 0\])

\[ \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 2x + 1\]\[ \Leftrightarrow {x^2} - 5x + 1 = 0\].

Vì đường thẳng \[y = x - 2\] cắt đồ thị hàm số \[y = \frac{{2x + 1}}{{x - 1}}\] tại hai điểm phân biệt \[A\] và \[B\] nên \[{x_A},{x_B}\] là hai nghiệm của phương trình \[{x^2} - 5x + 1 = 0\].

Theo định lý Vi-ét ta có: \[{x_A} + {x_B} = \frac{{ - b}}{a} = 5\]. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - \infty ;0} \right)\).                            

B. \(\left( {2; + \infty } \right)\).                                       
C. \(\left( { - 3;1} \right)\).     
D. \(\left( {0;2} \right)\).

Lời giải

Từ đồ thị, ta thấy hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\). Chọn D.

Lời giải

Vì \(f'\left( x \right) = 0\) có 3 nghiệm lẻ nên hàm số \(y = f\left( x \right)\) có 3 cực trị. Chọn A.

Câu 4

A. \(m =  - 3\).              
B. \(m =  - 1\).              
C. \(m = 2\).                                     
D. \(m = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(T = 1\).                  
B. \(T = 9\).                  
C. \(T =  - 4\).                                     
D. \(T =  - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y =  - {x^3} - 3x\). 
B. \(y = \frac{{x - 2}}{{x - 1}}\).                                 
C. \(y =  - {x^3} + 5{x^2}\).                           
D. \(y = \frac{{x - 1}}{{x - 2}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP