Câu hỏi:

17/06/2025 20

Người ta thống kê được chi phí sửa chữa, vận hành máy móc trong một năm của một xưởng sản xuất được tính bởi công thức \(f\left( x \right) = \frac{{2000x - 1500}}{{35x + 5}}\)(triệu đồng). Biết \(x\) là số năm kể từ lúc máy móc vận hành lần đầu tiên, số năm càng nhiều thì chi phí càng cao. Khi số năm \(x\) đủ lớn thì chi phí vận hành máy móc trong một năm gần với số nào? (làm tròn kết quả đến 1 chữ số thập phân sau dấu phẩy).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2000x - 1500}}{{35x + 5}} = \frac{{2000}}{{35}} = \frac{{400}}{7}\).

Do đó đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(y = \frac{{400}}{7}\) làm tiệm cận ngang, tức là khi số năm \(x\) càng lớn thì chi phí vận hành máy móc trong một năm càng tiến gần đến \(\frac{{400}}{7} \approx 57,1\) (triệu đồng).

Đáp án: \(57,1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định của hàm số \(y = f\left( x \right)\) là \[D = \mathbb{R}\].

Từ đồ thị, ta thấy hàm số đạt cực đại tại \(x = 0\), ; đạt cực tiểu tại \(x = 2\), \({y_{CT}} =  - 2\).

Hai cực trị  và \({y_{CT}} =  - 2\) trái dấu.

Ta có \(f'\left( x \right) = ax\left( {x - 2} \right) = a{x^2} - 2ax \Rightarrow f\left( x \right) = \frac{a}{3}{x^3} - a{x^2} + d\).

Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 2\\f\left( 2 \right) =  - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 3\\d = 2\end{array} \right. \Rightarrow f\left( x \right) = {x^3} - 3{x^2} + 2\). Vậy \(f\left( 5 \right) = 52\).

Đồ thị hàm số có có hai điểm cực trị là \(A\left( {0;2} \right),\,\,B\left( {2; - 2} \right)\).

Phương trình đường thẳng đi qua hai điểm cực trị là \(d:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 2}}{{ - 2 - 2}} \Rightarrow d:2x + y - 2 = 0\).

Khoảng cách từ \(O\) đến đường thẳng \(d\) là \(\frac{{\left| { - 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{2}{{\sqrt 5 }}\).

Ta có \(f'\left( x \right) = 3{x^2} - 6x\). Xét hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\).

Có \(g\prime \left( x \right) = f\prime \left( x \right) - \left( {3 - 6{x^2}} \right) = 9{x^2} - 6x - 3\). Cho \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - \frac{1}{3}\end{array} \right.\).

Bảng xét dấu:

Hàm số đã cho có hai cực trị trái dấu. (ảnh 2)

Dựa vào bảng xét dấu, hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\) đạt cực tiểu tại \(x = 1\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,          d) Sai.

Lời giải

Vì \(f'\left( x \right) = 0\) có 3 nghiệm lẻ nên hàm số \(y = f\left( x \right)\) có 3 cực trị. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP