Câu hỏi:

17/06/2025 15

Để tạo một kiện hàng dạng hình lăng trụ đứng với đáy là hình chữ nhật có chiều dài gấp đôi chiều rộng, người ta dùng các thanh gỗ ghép khít đóng lại với nhau. Biết rằng, dung tích kiện hàng bằng \(9\,{{\rm{m}}^{\rm{3}}}\) và giá thành  \(1\,{{\rm{m}}^{\rm{2}}}\) gỗ sử dụng là \(200\,000\) đồng.
Hỏi sau khi hoàn thành kiện hàng đó, người ta cần bỏ ra ít nhất bao nhiêu triệu đồng? (diện tích các mép giữa hai mặt kề nhau không đáng kể). (ảnh 1)

Hỏi sau khi hoàn thành kiện hàng đó, người ta cần bỏ ra ít nhất bao nhiêu triệu đồng? (diện tích các mép giữa hai mặt kề nhau không đáng kể).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\,\,\left( {{\rm{m}},\,x > 0} \right)\) là chiều rộng của đáy kiện hàng. Khi đó chiều dài của kiện hàng là \(2x\,\left( {\rm{m}} \right)\) và chiều cao của kiện hàng là \(\frac{9}{{2{x^2}}}\,\left( {\rm{m}} \right)\). Khi đó diện tích của kiện hàng là \(4{x^2} + \frac{{27}}{x}\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Xét hàm số \(f\left( x \right) = 4{x^2} + \frac{{27}}{x}\) có \(f'\left( x \right) = 8x - \frac{{27}}{{{x^2}}} = 0 \Leftrightarrow x = 1,5\).

Bảng biến thiên của hàm số \(f\left( x \right)\) như sau:

Hỏi sau khi hoàn thành kiện hàng đó, người ta cần bỏ ra ít nhất bao nhiêu triệu đồng? (diện tích các mép giữa hai mặt kề nhau không đáng kể). (ảnh 2)

Từ bảng biên thiên ta có \(\min \,f\left( x \right) = f\left( {1,5} \right) = 27\).

Vậy chi phí thấp nhất làm kiện hàng là: \(200\,000 \cdot 27 = 5\,400\,000\) đồng \( = 5,4\) triệu đồng.

Đáp án: \(5,4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định của hàm số \(y = f\left( x \right)\) là \[D = \mathbb{R}\].

Từ đồ thị, ta thấy hàm số đạt cực đại tại \(x = 0\), ; đạt cực tiểu tại \(x = 2\), \({y_{CT}} =  - 2\).

Hai cực trị  và \({y_{CT}} =  - 2\) trái dấu.

Ta có \(f'\left( x \right) = ax\left( {x - 2} \right) = a{x^2} - 2ax \Rightarrow f\left( x \right) = \frac{a}{3}{x^3} - a{x^2} + d\).

Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 2\\f\left( 2 \right) =  - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 3\\d = 2\end{array} \right. \Rightarrow f\left( x \right) = {x^3} - 3{x^2} + 2\). Vậy \(f\left( 5 \right) = 52\).

Đồ thị hàm số có có hai điểm cực trị là \(A\left( {0;2} \right),\,\,B\left( {2; - 2} \right)\).

Phương trình đường thẳng đi qua hai điểm cực trị là \(d:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 2}}{{ - 2 - 2}} \Rightarrow d:2x + y - 2 = 0\).

Khoảng cách từ \(O\) đến đường thẳng \(d\) là \(\frac{{\left| { - 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{2}{{\sqrt 5 }}\).

Ta có \(f'\left( x \right) = 3{x^2} - 6x\). Xét hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\).

Có \(g\prime \left( x \right) = f\prime \left( x \right) - \left( {3 - 6{x^2}} \right) = 9{x^2} - 6x - 3\). Cho \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - \frac{1}{3}\end{array} \right.\).

Bảng xét dấu:

Hàm số đã cho có hai cực trị trái dấu. (ảnh 2)

Dựa vào bảng xét dấu, hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\) đạt cực tiểu tại \(x = 1\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,          d) Sai.

Lời giải

Vì \(f'\left( x \right) = 0\) có 3 nghiệm lẻ nên hàm số \(y = f\left( x \right)\) có 3 cực trị. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP