Câu hỏi:

17/06/2025 103 Lưu

Cho hàm số \[y = \frac{{ax + b}}{{cx + d}}\left( {c \ne 0\,;\,ad - bc \ne 0} \right)\] có đồ thị như hình vẽ bên. Tiệm cận đứng của đồ thị hàm số đã cho là    
Tiệm cận đứng của đồ thị hàm số đã cho là   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường tiệm cận đứng của đồ thị hàm số đã cho là \[x = 2\]. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \(y =  - x + 3 - \frac{1}{{x + 2}} \Rightarrow y' =  - 1 + \frac{1}{{{{\left( {x + 2} \right)}^2}}} = \frac{{ - {x^2} - 4x - 3}}{{{{\left( {x + 2} \right)}^2}}}\).

Với \(y' = 0 \Leftrightarrow  - {x^2} - 4x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1 \notin \left[ { - 4; - 2} \right)\\x =  - 3 \in \left[ { - 4; - 2} \right)\end{array} \right.\).

Ta có bảng biến thiên:

v (ảnh 1)

Dựa vào đồ thị \(\mathop {\min }\limits_{\left[ { - 4; - 2} \right)} y = 7\). Chọn C.

Lời giải

Giả sử cửa hàng bán gạo với giá giảm \[x\] nghìn đồng /\[1{\kern 1pt} {\kern 1pt} \,{\rm{kg}}\].

Khi đó số gạo bán được trong một tháng là: \[12\,000{\kern 1pt} \, + 4\,000x\] (kg).

Doanh thu của cửa hàng trong một tháng là: \[P\left( x \right) = \left( {35 - x} \right)\left( {12\,000{\kern 1pt}  + 4\,000x} \right)\] (nghìn đồng).

Chi phí của cửa hàng trong một tháng là: \[C\left( x \right) = 30\left( {12\,000{\kern 1pt}  + 4\,000x} \right)\] (nghìn đồng).

Lợi nhuận của cửa hàng thu được trong một tháng là:

\[L\left( x \right) = P\left( x \right) - C\left( x \right) = \left( {5 - x} \right)\left( {12\,000{\kern 1pt}  + 4\,000x} \right) =  - 4\,000{x^2} + 8\,000x + 60\,000\] (nghìn đồng).

\[L'\left( x \right) =  - 8\,000x + 8\,000 = 0 \Leftrightarrow x = 1\].

\[ \Rightarrow {L_{\max }} = L\left( 1 \right) = 64\,000\].

Vậy cửa hàng phải định giá bán gạo mới là \[34\] nghìn đồng một kilôgam thì lợi nhuận thu được trong tháng cao nhất.

Đáp án: \[34\].

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP