Câu hỏi:

17/06/2025 65

Một công ty thiết kế mẫu huy hiệu để tặng cho khách hàng thân thiết của mình (xem hình vẽ bên). Trong đó \(ABCD\) là hình vuông có cạnh bằng \(4\,{\rm{cm}}\), các đường cong \(AOD\) \(BOC\) là một phần của các parabol đỉnh \(O\). Với hệ trục tọa độ \(Oxy\) (đơn vị trên mỗi trục tọa độ là centimét) thì điểm \(A\) có tung độ bằng \(1\). Biết phần tô đậm trong hình vẽ được phủ vàng với chi phí \(1\) một triệu đồng/\(1\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\), phần còn lại được phủ bạc với chi phí 300 nghìn đồng/\(1\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\), các chi phí còn lại là 500 nghìn đồng.

c (ảnh 1)

a) Parabol chứa đường cong \(AOD\) có phương trình là \(y = \frac{1}{{16}}{x^2}\).

b) Parabol chứa đường cong \(BOC\) có phương trình là \(y = - \frac{3}{4}{x^2}\).

c) Diện tích phần tô đậm trong hình vẽ lớn hơn \(5,5\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\).

d) Chí sản xuất \(1\) chiếc huy hiệu trên nhỏ hơn \(9\) triệu đồng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì \(ABCD\) là hình vuông có cạnh bằng \(4\,{\rm{cm}}\) và điểm \(A\) có tung độ bằng \(1\) nên điểm \(B\) có tung độ bằng \( - 3\). Ta có hình vẽ sau:

Gọi parabol chứa đường cong \(AOD\) có phương trình là \(y = a{x^2}\).

Vì parabol đi qua điểm\(A\left( { - 2;1} \right)\) nên ta có: \(1 = a \cdot {\left( { - 2} \right)^2} \Leftrightarrow a = \frac{1}{4}\)\( \Rightarrow y = \frac{1}{4}{x^2}\).

Gọi parabol chứa đường cong \(BOC\) có phương trình là \(y = a'{x^2}\).

Vì parabol đi qua điểm\(C\left( {2; - 3} \right)\) nên ta có: \( - 3 = a \cdot {2^2} \Leftrightarrow a =  - \frac{3}{4}\)\( \Rightarrow y =  - \frac{3}{4}{x^2}\).

Phần tô đậm \(AOB\) được giới hạn bởi hai đồ thị hàm số \(y = \frac{1}{4}{x^2}\), \(y =  - \frac{3}{4}{x^2}\) và hai đường thẳng \(x =  - 2\), \(x = 0\) nên có diện tích là \({S_1} = \int\limits_{ - 2}^0 {\left[ {\frac{1}{4}{x^2} - \left( { - \frac{3}{4}} \right){x^2}} \right]{\rm{d}}x}  = \frac{8}{3}\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Phần tô đậm \(COD\) được giới hạn bởi hai đồ thị hàm số \(y = \frac{1}{4}{x^2}\), \(y =  - \frac{3}{4}{x^2}\) và hai đường thẳng \(x = 0\), \(x = 2\) nên có diện tích là \({S_2} = \int\limits_0^2 {\left[ {\frac{1}{4}{x^2} - \left( { - \frac{3}{4}} \right){x^2}} \right]{\rm{d}}x}  = \frac{8}{3}\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Diện tích phần tô đậm trong hình vẽ là \[S = {S_1} + {S_2} = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}} < 5,5\,\,({\rm{c}}{{\rm{m}}^{\rm{2}}})\].

Diện tích hình vuông \(ABCD\) là \({S_{ABCD}} = {4^2} = 16\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Diện tích phần không tô đậm là \({S_k} = 16 - \frac{{16}}{3} = \frac{{32}}{3}\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Tổng chi phí để làm chiếc huy hiệu: \(T = 1\,000\,000 \cdot \frac{{16}}{3} + 300\,000 \cdot \frac{{32}}{3} + 500\,000 \approx 9\,033\,333\) (đồng).

Đáp án:       a) Sai,         b) Đúng,     c) Sai,          d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính thể tích của chiếc vòng (theo đơn vị đo là centimét khối và làm tròn kết quả đến hàng đơn vị). (ảnh 2)

Gắn hệ trục tọa độ với gốc tọa độ là tâm của chiếc vòng, trục \(Ox\) là trục đối xứng của vòng, \(Oy\) đi qua tâm một thiết diện cắt ngang của vòng.

Khi đó phương trình đường tròn thiết diện là

\(\left( C \right):{x^2} + {\left( {y - 6} \right)^2} = 1 \Leftrightarrow y = 6 \pm \sqrt {1 - {x^2}} \).

Vòng được tạo ra bằng cách quay đường tròn \(\left( C \right):{x^2} + {\left( {y - 6} \right)^2} = 1\) quanh trục \(Ox\).

Thể tích của chiếc vòng là:

\[{V_{Ox}} = \pi \left[ {\int\limits_{ - 1}^1 {{{\left( {6 + \sqrt {1 - {x^2}} } \right)}^2}{\rm{d}}x - } \int\limits_{ - 1}^1 {{{\left( {6 - \sqrt {1 - {x^2}} } \right)}^2}{\rm{d}}x} } \right] = \pi \int\limits_{ - 1}^1 {24\sqrt {1 - {x^2}} } {\rm{d}}x = 12{\pi ^2} \approx 118\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\].

Đáp án: \(118\).

Câu 2

Cho một chất điểm chuyển động theo quy luật vận tốc \[v\left( t \right)\]( đơn vị: \[{\rm{m/s}}\]) có đồ thị như hình vẽ bên. Trong đó đồ thị có dạng các đoạn thẳng tương ứng theo thời gian \[t\] giây khi \[0 \le t \le 3\], \[8 \le t \le 15\] và có dạng đường parabol tương ứng thời gian \[t\] giây khi \[3 \le t \le 8\].
v (ảnh 1)

a) Vận tốc của chất điểm tại thời điểm \[t = 15\]\[v\left( {15} \right) = 21\,\,\left( {{\rm{m/s}}} \right)\].

b) Quãng đường mà chất điểm đi được trong thời gian \[3\] giây đầu \[\left( {0 \le t \le 3} \right)\]\(S = \int\limits_0^3 {11\,{\rm{d}}t\,\,\,{\rm{(m)}}} \).

c) Quãng đường mà chất điểm đi được trong khoảng thời gian \[7\] giây cuối \[\left( {8 \le t \le 15} \right)\]\(73,5\,\,{\rm{m}}\).

d) Vận tốc trung bình \({v_{tb}}\) của chất điểm trong thời gian \[t\] giây \[\left( {3 \le t \le 8} \right)\] thỏa mãn \({v_{tb}} < 7\,\,\left( {{\rm{m/s}}} \right)\).

Lời giải

Vận tốc của chất điểm tại thời điểm \[t = 15\] là \[v\left( {15} \right) = 0\;\].

Quãng đường chất điểm đi được trong thời gian \[3\] giây đầu \[\left( {0 \le t \le 3} \right)\] là \(S = \int\limits_0^3 {11\,{\rm{d}}t\,\,\,(m)} \).

Gọi hàm vận tốc thời gian \(7\) giây cuối \[\left( {8 \le t \le 15} \right)\] có dạng là \[\left( d \right):{\rm{ }}y = at + b\].

Đường thẳng \[\left( d \right)\] đi qua 2 điểm \[\left( {8\,;21} \right)\] và \[\left( {15\,;0} \right)\] nên ta có hệ phương trình:

\(\left\{ \begin{array}{l}8a + b = 21\\15a + b = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - 3\\b = 45\end{array} \right.\)\[ \Rightarrow \left( d \right):y =  - 3t + 45\].

Quãng đường chất điểm đi được trong thời gian \[t\] giây \[\left( {8 \le t \le 15} \right)\] là:

\(S = \int\limits_8^{15} {\left( { - 3t + 45} \right)\,{\rm{d}}t = 73,5\,\,{\rm{(m)}}} \).

Gọi hàm vận tốc thời gian \(t\) giây \[\left( {3 \le t \le 8} \right)\]có dạng là \(\left( P \right):y = a{t^2} + bt + c\).

Parabol \[\left( P \right)\] đi qua các điểm \[\left( {3\,;11} \right)\], \[\left( {5\,;3} \right)\] và \[\left( {8\,;21} \right)\] nên ta có hệ phương trình:

\(\left\{ \begin{array}{l}9a + 3b + c = 11\\25a + 5b + c = 3\\64a + 8b + c = 21\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 20\\c = 53\end{array} \right.\) \( \Rightarrow \left( P \right):y = 2{t^2} - 20t + 53\).

Quãng đường chất điểm đi được trong thời gian \(t\) giây \[\left( {3 \le t \le 8} \right)\] là:

\(S = \int\limits_3^8 {\left( {2{t^2} - 20t + 53} \right)\,{\rm{d}}t = \frac{{115}}{3}} \,\,{\rm{(m)}}\).

Vận tốc trung bình của chất điểm trong thời gian \[t\] giây \[\left( {3 \le t \le 8} \right)\] là:

\[\frac{{115}}{3}:\left( {8 - 3} \right) = \frac{{23}}{3} > 7\;\].

Đáp án:       a) Sai,         b) Đúng,     c) Đúng,      d) Sai.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP