Câu hỏi:

17/06/2025 9

Một công ty thiết kế mẫu huy hiệu để tặng cho khách hàng thân thiết của mình (xem hình vẽ bên). Trong đó \(ABCD\) là hình vuông có cạnh bằng \(4\,{\rm{cm}}\), các đường cong \(AOD\) \(BOC\) là một phần của các parabol đỉnh \(O\). Với hệ trục tọa độ \(Oxy\) (đơn vị trên mỗi trục tọa độ là centimét) thì điểm \(A\) có tung độ bằng \(1\). Biết phần tô đậm trong hình vẽ được phủ vàng với chi phí \(1\) một triệu đồng/\(1\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\), phần còn lại được phủ bạc với chi phí 300 nghìn đồng/\(1\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\), các chi phí còn lại là 500 nghìn đồng.

c (ảnh 1)

a) Parabol chứa đường cong \(AOD\) có phương trình là \(y = \frac{1}{{16}}{x^2}\).

b) Parabol chứa đường cong \(BOC\) có phương trình là \(y = - \frac{3}{4}{x^2}\).

c) Diện tích phần tô đậm trong hình vẽ lớn hơn \(5,5\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\).

d) Chí sản xuất \(1\) chiếc huy hiệu trên nhỏ hơn \(9\) triệu đồng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì \(ABCD\) là hình vuông có cạnh bằng \(4\,{\rm{cm}}\) và điểm \(A\) có tung độ bằng \(1\) nên điểm \(B\) có tung độ bằng \( - 3\). Ta có hình vẽ sau:

Gọi parabol chứa đường cong \(AOD\) có phương trình là \(y = a{x^2}\).

Vì parabol đi qua điểm\(A\left( { - 2;1} \right)\) nên ta có: \(1 = a \cdot {\left( { - 2} \right)^2} \Leftrightarrow a = \frac{1}{4}\)\( \Rightarrow y = \frac{1}{4}{x^2}\).

Gọi parabol chứa đường cong \(BOC\) có phương trình là \(y = a'{x^2}\).

Vì parabol đi qua điểm\(C\left( {2; - 3} \right)\) nên ta có: \( - 3 = a \cdot {2^2} \Leftrightarrow a =  - \frac{3}{4}\)\( \Rightarrow y =  - \frac{3}{4}{x^2}\).

Phần tô đậm \(AOB\) được giới hạn bởi hai đồ thị hàm số \(y = \frac{1}{4}{x^2}\), \(y =  - \frac{3}{4}{x^2}\) và hai đường thẳng \(x =  - 2\), \(x = 0\) nên có diện tích là \({S_1} = \int\limits_{ - 2}^0 {\left[ {\frac{1}{4}{x^2} - \left( { - \frac{3}{4}} \right){x^2}} \right]{\rm{d}}x}  = \frac{8}{3}\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Phần tô đậm \(COD\) được giới hạn bởi hai đồ thị hàm số \(y = \frac{1}{4}{x^2}\), \(y =  - \frac{3}{4}{x^2}\) và hai đường thẳng \(x = 0\), \(x = 2\) nên có diện tích là \({S_2} = \int\limits_0^2 {\left[ {\frac{1}{4}{x^2} - \left( { - \frac{3}{4}} \right){x^2}} \right]{\rm{d}}x}  = \frac{8}{3}\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Diện tích phần tô đậm trong hình vẽ là \[S = {S_1} + {S_2} = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}} < 5,5\,\,({\rm{c}}{{\rm{m}}^{\rm{2}}})\].

Diện tích hình vuông \(ABCD\) là \({S_{ABCD}} = {4^2} = 16\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Diện tích phần không tô đậm là \({S_k} = 16 - \frac{{16}}{3} = \frac{{32}}{3}\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Tổng chi phí để làm chiếc huy hiệu: \(T = 1\,000\,000 \cdot \frac{{16}}{3} + 300\,000 \cdot \frac{{32}}{3} + 500\,000 \approx 9\,033\,333\) (đồng).

Đáp án:       a) Sai,         b) Đúng,     c) Sai,          d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \frac{{{x^2} - 3x + 2}}{x}\)      

Lời giải

Ta có \(f\left( x \right) = \frac{{{x^2} - 3x + 2}}{x} = x - 3 + \frac{2}{x}\).

Suy ra \(\int {f\left( x \right){\rm{d}}x}  = \int {\left( {x - 3 + \frac{2}{x}} \right)\,} {\rm{d}}x = \frac{1}{2}{x^2} - 3x + 2\ln \left| x \right| + C\). Chọn B.

Câu 2

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Họ các nguyên hàm của hàm số \(f\left( x \right) = 3{e^x}\)

Lời giải

Ta có \(\int {f\left( x \right){\rm{d}}x}  = \int {{\rm{3}}{e^x}{\rm{d}}x}  = 3{e^x} + C\). Chọn C.

Câu 3

Họ nguyên hàm của hàm số \[f\left( x \right) = {\sin ^2}x\]     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số \(y = f\left( x \right)\). Biết rằng phần hình phẳng giới hạn bởi \({S_1}\)\({S_2}\) (xem hình vẽ) có diện tích lần lượt bằng \(7\)\(2\).

v (ảnh 1)

Tích phân \(\int\limits_{ - 1}^4 {f\left( x \right){\rm{d}}x} \) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Biết \(\int\limits_0^9 {f\left( x \right){\rm{d}}x} = 37\)\[\int\limits_0^9 {\left[ {3f\left( x \right) - 2g\left( x \right)} \right]{\rm{d}}x} = 61\]. Khi đó, \(\int\limits_0^9 {g\left( x \right){\rm{d}}x} \) bằng     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Biết rằng \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {1;4} \right]\)\(F\left( 4 \right) = 9\), \(F\left( 1 \right) = 3\). Giá trị của \(\int\limits_1^4 {\left[ {f\left( x \right) + 2} \right]{\rm{d}}} x\) bằng     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Nếu \(\int\limits_{ - 3}^1 {f\left( x \right)} \,{\rm{d}}x = - 2\) thì \(\int\limits_{ - 3}^1 {\left[ {2 - 5f\left( x \right)} \right]} \,{\rm{d}}x\) bằng     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay