Câu hỏi:

17/06/2025 10

Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M\left( {1;2; - 2} \right)\) và mặt phẳng \(\left( P \right)\) có phương trình \(2x + y - 3z + 1 = 0\). Phương trình đường thẳng đi qua \(M\) và vuông góc với \(\left( P \right)\)     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt phẳng \(\left( P \right):2x + y - 3z + 1 = 0\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {2;1; - 3} \right)\).

Đường thẳng đi qua \(M\left( {1;2; - 2} \right)\) và vuông góc với \(\left( P \right)\) nên nhận \(\overrightarrow n  = \left( {2;1; - 3} \right)\) làm vectơ chỉ phương. Vậy phương trình tham số là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + t\\z =  - 2 - 3t\end{array} \right.\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \[\vec u = 2\vec a - 3\vec b + \vec c = \left( {5\,;\,3\,;\, - 9} \right)\]. Chọn C.

Lời giải

c (ảnh 2)

Từ \(6{\rm{h}}00\) đến \(6{\rm{h}}30\) máy bay \(A\) đi được quãng đường là: \(OA = 800 \cdot 0,5 = 400\) (km).

Vì \(OA\) tạo với ba trục tọa độ các góc bằng nhau nên suy ra \(OM = ON = OP\).

Đặt \(OM = ON = OP = x\)\( \Rightarrow OA = x\sqrt 3  = 400\)\( \Leftrightarrow x = \frac{{400\sqrt 3 }}{3}\)\( \Rightarrow A\left( {\frac{{400\sqrt 3 }}{3};\frac{{400\sqrt 3 }}{3};\frac{{400\sqrt 3 }}{3}} \right)\).

Tương tự, từ \(6{\rm{h}}10\) đến \(6{\rm{h}}30\) máy bay \(B\) đi được quãng đường là: \(OB = 900 \cdot \frac{1}{3} = 300\) (km).

Vì \(OB\) tạo với ba trục các góc bằng nhau nên suy ra \(B\left( { - 100\sqrt 3 ; - 100\sqrt 3 ;100\sqrt 3 } \right)\).

Vậy \(AB = \sqrt {33 \cdot {{10}^4}}  \approx 574\) (km).

Đáp án: 574.