Câu hỏi:
18/06/2025 27
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O.\] Gọi \[M,\,\,N,\,\,P\] theo thứ tự là trung điểm của \[SA,\,\,SD\] và \[AB.\] Khẳng định nào sau đây đúng?
Quảng cáo
Trả lời:
B
Ta có \[MN\] là đường trung bình của tam giác \[SAD\] suy ra \[MN\]//\[AD.\] \[\,\left( 1 \right)\]
Và \[OP\] là đường trung bình của tam giác \[BAD\] suy ra \[OP\]//\[AD.\] \[\,\left( 2 \right)\]
Từ \[\left( 1 \right),\left( 2 \right)\] suy ra \[MN\]//\[OP\]//\[AD\] \[ \Rightarrow \,\,M,\,\,N,\,\,O,\,\,P\] đồng phẳng.
Lại có \[MP\]//\[SB,\,\,\,OP\]//\[BC\] suy ra \[\left( {MNOP} \right)\]//\[\left( {SBC} \right)\] hay \[\left( {MON} \right)\]//\[\left( {SBC} \right).\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SC, SB.
Vì (P) // (ABC) nên theo định lí Thales ta có \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SC}} = \frac{{SP}}{{SB}} = \frac{2}{3} \approx 0,67\).
Trả lời: 0,67.
Lời giải
a) \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]
b) AA1 // CC1 mà CC1 Ì (BCC1) nên \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]
c) AB // A1B1 mà A1B1 Ì ( A1B1C1) nên \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]
d) Các mặt bên của hình lăng trụ là các hình bình hành.
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.