Câu hỏi:

18/06/2025 62 Lưu

Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\]

a) \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]   

b) \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]

c) \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]                 

d) \(A{A_1}{B_1}B\) là hình chữ nhật.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

C (ảnh 1)

a) \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]

b) AA1 // CC1 mà CC1 Ì (BCC1) nên \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]

c) AB // A1B1 mà  A1B1 Ì ( A1B1C1) nên \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]

d) Các mặt bên của hình lăng trụ là các hình bình hành.

Đáp án: a) Đúng; b) Đúng;    c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

C (ảnh 1)

Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SC, SB.

Vì (P) // (ABC) nên theo định lí Thales ta có \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SC}} = \frac{{SP}}{{SB}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

Câu 2

A. \[\left( \alpha \right)\parallel \left( \gamma \right)\]\(\left( \beta \right)\parallel \left( \gamma \right)\;(\left( \gamma \right)\) là mặt phẳng nào đó\[).\]     
B. \(\left( \alpha \right)\parallel a\)\(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng phân biệt thuộc \(\left( \beta \right).\)      
C. \(\left( \alpha \right)\parallel a\) \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng phân biệt cùng song song với \(\left( \beta \right).\)                                         
D. \(\left( \alpha \right)\parallel a\) \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta \right).\)

Lời giải

D

\(\left( \alpha  \right)\parallel a\) và \(\left( \alpha  \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta  \right)\) thì (α) // (β).

Câu 3

A. (BCI).                       
B. (BIJ).                        
C. (CIJ).                                 
D. (SJC).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Nếu \(a\parallel a'\)\(b\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)      
B. Nếu \(\left( \alpha \right)\parallel \left( \beta \right)\) thì \(a\parallel a'\)\(b\parallel b'.\)      
C. Nếu \(a\parallel b\)\(a'\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)      
D. Nếu \(a\) cắt \(b\)\(a\parallel a',\;b\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {NOM} \right)\) cắt \[\left( {OPM} \right).\]     
B. \[\left( {MON} \right)\]//\[\left( {SBC} \right).\]             
C. \(\left( {PON} \right) \cap \left( {MNP} \right) = NP.\)        
D. \(\left( {NMP} \right)\)//\[\left( {SBD} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP