20 câu trắc nghiệm Toán 11 Chân trời sáng tạo Bài 4. Hai mặt phẳng song song (Đúng sai - Trả lời ngắn) có đáp án
13 người thi tuần này 4.6 13 lượt thi 20 câu hỏi 60 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
+ Trong không gian, hai mặt phẳng có \(3\) vị trí tương đối: trùng nhau, cắt nhau, song song với nhau. Vì vậy, \(2\) mặt phẳng không cắt nhau thì có thể song song hoặc trùng nhau \( \Rightarrow \)A là mệnh đề sai.
+ Hai mặt phẳng cùng song song với một đường thẳng thì chúng có thể song song với nhau (hình vẽ) \( \Rightarrow \) B là mệnh đề sai.
+Ta có:\[a\parallel \left( P \right),a\parallel \left( Q \right)\] nhưng \(\left( P \right)\) và \(\left( Q \right)\) vẫn có thể song song với nhau.
Mệnh đề C là tính chất nên C đúng.
Lời giải
D
\(\left( \alpha \right)\parallel a\) và \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta \right)\) thì (α) // (β).
Lời giải
D
Nếu \(a\) cắt \(b\) và \(a\parallel a',\;b\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)
Lời giải
B
Ta có \[MN\] là đường trung bình của tam giác \[SAD\] suy ra \[MN\]//\[AD.\] \[\,\left( 1 \right)\]
Và \[OP\] là đường trung bình của tam giác \[BAD\] suy ra \[OP\]//\[AD.\] \[\,\left( 2 \right)\]
Từ \[\left( 1 \right),\left( 2 \right)\] suy ra \[MN\]//\[OP\]//\[AD\] \[ \Rightarrow \,\,M,\,\,N,\,\,O,\,\,P\] đồng phẳng.
Lại có \[MP\]//\[SB,\,\,\,OP\]//\[BC\] suy ra \[\left( {MNOP} \right)\]//\[\left( {SBC} \right)\] hay \[\left( {MON} \right)\]//\[\left( {SBC} \right).\]
Lời giải
B
Ta có \(\frac{{AK}}{{AP}} = \frac{{AI}}{{AM}} = \frac{{AJ}}{{AN}} = \frac{2}{3}\) nên KJ // PN Þ KJ // (BCD) và IJ // MN Þ IJ // (BCD).
Mà KJ, IJ Ì (KIJ) và KJ Ç IJ = J nên (KIJ) // (BCD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SD. Khi đó:
a) MN // (SBC).
b) (OMN) // (SBC).
c) Gọi E là trung điểm của đoạn thẳng CD. Khi đó E là giao điểm của CD với mặt phẳng (OMN).
d) Mặt phẳng (OMN) cắt các mặt của hình chóp S.ABCD tạo thành một hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SD. Khi đó:
a) MN // (SBC).
b) (OMN) // (SBC).
c) Gọi E là trung điểm của đoạn thẳng CD. Khi đó E là giao điểm của CD với mặt phẳng (OMN).
d) Mặt phẳng (OMN) cắt các mặt của hình chóp S.ABCD tạo thành một hình bình hành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.