Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SD. Khi đó:
a) MN // (SBC).
b) (OMN) // (SBC).
c) Gọi E là trung điểm của đoạn thẳng CD. Khi đó E là giao điểm của CD với mặt phẳng (OMN).
d) Mặt phẳng (OMN) cắt các mặt của hình chóp S.ABCD tạo thành một hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SD. Khi đó:
a) MN // (SBC).
b) (OMN) // (SBC).
c) Gọi E là trung điểm của đoạn thẳng CD. Khi đó E là giao điểm của CD với mặt phẳng (OMN).
d) Mặt phẳng (OMN) cắt các mặt của hình chóp S.ABCD tạo thành một hình bình hành.
Quảng cáo
Trả lời:

a) DSAD có MN // AD mà AD // BC nên MN // BC Þ MN // (SBC).
b) DSBD có ON // SB Þ ON // (SBC) mà ON Ç MN = N nên (OMN) // (SBC).
c) Ta có O Î (OMN) Ç (ABCD) mà MN // AD nên (OMN) Ç (ABCD) = Ox // AD.
Giả sử Ox Ç CD = E, Ox Ç AB = F.
Mà O là trung điểm của BD nên E là trung điểm của CD và F là trung điểm của AB.
d) Mặt phẳng (OMN) Ç (ABCD) = EF; (OMN) Ç (SCD) = NE;
(OMN) Ç (SAD) = MN; (OMN) Ç (SAB) = MF.
Có MN // AD // EF Þ MN // EF.
Do đó Mặt phẳng (OMN) cắt các mặt của hình chóp S.ABCD tạo thành một hình thang MNEF.
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SC, SB.
Vì (P) // (ABC) nên theo định lí Thales ta có \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SC}} = \frac{{SP}}{{SB}} = \frac{2}{3} \approx 0,67\).
Trả lời: 0,67.
Lời giải
D
Nếu \(a\) cắt \(b\) và \(a\parallel a',\;b\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.