Câu hỏi:

18/06/2025 89 Lưu

Cho hình chóp S.ABC có đáy là tam giác ABC. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM = 2MA. Gọi N là giao điểm của mặt phẳng (P) và các cạnh SC. Tính tỉ số \(\frac{{SN}}{{SC}}\) (kết quả làm tròn đến chữ số thập phân thứ hai).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

C (ảnh 1)

Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SC, SB.

Vì (P) // (ABC) nên theo định lí Thales ta có \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SC}} = \frac{{SP}}{{SB}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left( \alpha \right)\parallel \left( \gamma \right)\]\(\left( \beta \right)\parallel \left( \gamma \right)\;(\left( \gamma \right)\) là mặt phẳng nào đó\[).\]     
B. \(\left( \alpha \right)\parallel a\)\(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng phân biệt thuộc \(\left( \beta \right).\)      
C. \(\left( \alpha \right)\parallel a\) \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng phân biệt cùng song song với \(\left( \beta \right).\)                                         
D. \(\left( \alpha \right)\parallel a\) \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta \right).\)

Lời giải

D

\(\left( \alpha  \right)\parallel a\) và \(\left( \alpha  \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta  \right)\) thì (α) // (β).

Câu 2

A. (BCI).                       
B. (BIJ).                        
C. (CIJ).                                 
D. (SJC).

Lời giải

C

 Mặt phẳng nào song song với mặt phẳng (SAD). 	 (ảnh 1)

Vì I, J lần lượt là trung điểm của SB và AB nên IJ // SA.

Do J là trung điểm AB và AB = 2CD nên AJ = CD.

Mà AJ // CD nên AJCD là hình bình hành.

Do đó CJ // AD.

Ta có \(\left\{ \begin{array}{l}IJ//SA\\JC//AD\\IJ,JC \subset \left( {CIJ} \right)\\SA,AD \subset \left( {SAD} \right)\\CJ \cap IJ = J\end{array} \right. \Rightarrow \left( {CIJ} \right)//\left( {SAD} \right)\).

Câu 3

A. Nếu \(a\parallel a'\)\(b\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)      
B. Nếu \(\left( \alpha \right)\parallel \left( \beta \right)\) thì \(a\parallel a'\)\(b\parallel b'.\)      
C. Nếu \(a\parallel b\)\(a'\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)      
D. Nếu \(a\) cắt \(b\)\(a\parallel a',\;b\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {NOM} \right)\) cắt \[\left( {OPM} \right).\]     
B. \[\left( {MON} \right)\]//\[\left( {SBC} \right).\]             
C. \(\left( {PON} \right) \cap \left( {MNP} \right) = NP.\)        
D. \(\left( {NMP} \right)\)//\[\left( {SBD} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP