Câu hỏi:

18/06/2025 84 Lưu

Cho hình chóp S.ABC có G là trọng tâm tam giác ABC. Mặt phẳng (α) đi qua G và song song với mặt phẳng (SBC), M là giao điểm của (α) với SA. Tính \(\frac{{SM}}{{SA}}\) (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

C (ảnh 1)

Gọi I là trung điểm BC, khi đó SI = (SBC) Ç (SAI).

Gọi d = (α) Ç (SAI) với d là đường thẳng qua G do G = (α) Ç (SAI).

Mặt khác (α) // (SBC) nên d là đường thẳng qua G và song song SI.

Trong (SAI) điểm M cần tìm là giao điểm của d và SA.

Khi đó \(\frac{{SM}}{{SA}} = \frac{{IG}}{{IA}} = \frac{1}{3} \approx 0,33.\)

Trả lời: 0,33.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left( \alpha \right)\parallel \left( \gamma \right)\]\(\left( \beta \right)\parallel \left( \gamma \right)\;(\left( \gamma \right)\) là mặt phẳng nào đó\[).\]     
B. \(\left( \alpha \right)\parallel a\)\(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng phân biệt thuộc \(\left( \beta \right).\)      
C. \(\left( \alpha \right)\parallel a\) \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng phân biệt cùng song song với \(\left( \beta \right).\)                                         
D. \(\left( \alpha \right)\parallel a\) \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta \right).\)

Lời giải

D

\(\left( \alpha  \right)\parallel a\) và \(\left( \alpha  \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta  \right)\) thì (α) // (β).

Câu 4

A. (BCI).                       
B. (BIJ).                        
C. (CIJ).                                 
D. (SJC).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hai mặt phẳng không cắt nhau thì song song.     
B. Hai mặt phẳng cùng song song với một đường thẳng thì cắt nhau.     
C. Qua một điểm nằm ngoài một mặt phẳng cho trước có duy nhất một mặt phẳng song song với mặt phẳng đó.     
D. Qua một điểm nằm ngoài một mặt phẳng cho trước có vô số mặt phẳng song song với mặt phẳng đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(ABCD\) là hình bình hành.      
B. Các đường thẳng \[{A_1}C,\,\,A{C_1},\,\,D{B_1},\,\,{D_1}B\] đồng quy.                          
C. \(\left( {AD{D_1}{A_1}} \right)\)//\[\left( {BC{C_1}{B_1}} \right).\]                   
D. \(A{D_1}CB\) là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP