Câu hỏi:

18/06/2025 72 Lưu

Cho hình hộp \[ABCD.{A_1}{B_1}{C_1}{D_1}.\] Khẳng định nào dưới đây là sai?      

A. \(ABCD\) là hình bình hành.      
B. Các đường thẳng \[{A_1}C,\,\,A{C_1},\,\,D{B_1},\,\,{D_1}B\] đồng quy.                          
C. \(\left( {AD{D_1}{A_1}} \right)\)//\[\left( {BC{C_1}{B_1}} \right).\]                   
D. \(A{D_1}CB\) là hình chữ nhật.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

D

Khẳng định nào dưới đây là sai?  (ảnh 1)

Dựa vào hình vẽ và tính chất của hình hộp chữ nhật, ta thấy rằng:

Hình hộp có đáy \[ABCD\] là hình bình hành.

Các đường thẳng \[{A_1}C,\,\,A{C_1},\,\,D{B_1},\,\,{D_1}B\] cắt nhau tại tâm của \[A{A_1}{C_1}C,\,\,\,BD{D_1}{B_1}.\]

Hai mặt bên \(\left( {AD{D_1}{A_1}} \right),\,\,\left( {BC{C_1}{B_1}} \right)\) đối diện và song song với nhau.

\[A{D_1}\] và \[CB\] là hai đường thẳng chéo nhau suy ra \[A{D_1}CB\] không phải là hình chữ nhật.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left( \alpha \right)\parallel \left( \gamma \right)\]\(\left( \beta \right)\parallel \left( \gamma \right)\;(\left( \gamma \right)\) là mặt phẳng nào đó\[).\]     
B. \(\left( \alpha \right)\parallel a\)\(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng phân biệt thuộc \(\left( \beta \right).\)      
C. \(\left( \alpha \right)\parallel a\) \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng phân biệt cùng song song với \(\left( \beta \right).\)                                         
D. \(\left( \alpha \right)\parallel a\) \(\left( \alpha \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta \right).\)

Lời giải

D

\(\left( \alpha  \right)\parallel a\) và \(\left( \alpha  \right)\parallel b\) với \(a,b\) là hai đường thẳng cắt nhau thuộc\(\left( \beta  \right)\) thì (α) // (β).

Lời giải

C (ảnh 1)

Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SC, SB.

Vì (P) // (ABC) nên theo định lí Thales ta có \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SC}} = \frac{{SP}}{{SB}} = \frac{2}{3} \approx 0,67\).

Trả lời: 0,67.

Câu 4

A. Hai mặt phẳng không cắt nhau thì song song.     
B. Hai mặt phẳng cùng song song với một đường thẳng thì cắt nhau.     
C. Qua một điểm nằm ngoài một mặt phẳng cho trước có duy nhất một mặt phẳng song song với mặt phẳng đó.     
D. Qua một điểm nằm ngoài một mặt phẳng cho trước có vô số mặt phẳng song song với mặt phẳng đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. (BCI).                       
B. (BIJ).                        
C. (CIJ).                                 
D. (SJC).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(a\parallel a'\)\(b\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)      
B. Nếu \(\left( \alpha \right)\parallel \left( \beta \right)\) thì \(a\parallel a'\)\(b\parallel b'.\)      
C. Nếu \(a\parallel b\)\(a'\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)      
D. Nếu \(a\) cắt \(b\)\(a\parallel a',\;b\parallel b'\) thì \(\left( \alpha \right)\parallel \left( \beta \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\]

a) \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]   

b) \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]

c) \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]                 

d) \(A{A_1}{B_1}B\) là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP