Câu hỏi:
18/06/2025 44
Cho hình bình hành ABCD và một điểm S không thuộc mặt phẳng (ABCD), các điểm M, N lần lượt là trung điểm của đoạn thẳng AB, SC. Gọi O = AC Ç BD.
a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).
b) Giao điểm I của đường thẳng AN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SD.
c) Giao điểm J của đường thẳng MN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SO.
d) Ba điểm I, J, B thẳng hàng.
Cho hình bình hành ABCD và một điểm S không thuộc mặt phẳng (ABCD), các điểm M, N lần lượt là trung điểm của đoạn thẳng AB, SC. Gọi O = AC Ç BD.
a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).
b) Giao điểm I của đường thẳng AN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SD.
c) Giao điểm J của đường thẳng MN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SO.
d) Ba điểm I, J, B thẳng hàng.
Quảng cáo
Trả lời:
a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).
b) Trong mặt phẳng (ABCD) có O = AC Ç BD.
Trong (SAC), gọi I = SO Ç AN.
Ta có \(\left\{ \begin{array}{l}I \in AN\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I = AN \cap \left( {SBD} \right)\).
Vậy điểm I là điểm nằm trên đường thẳng SO.
c) Trong (ABCD), gọi P = CM Ç BD.
Trong (SCM), gọi J = MN Ç SP.
Ta có \(\left\{ \begin{array}{l}J \in MN\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J = MN \cap \left( {SBD} \right)\).
Vậy J là điểm nằm trên đường thẳng SP.
d) Dễ thấy B Î (ABN) Ç (SBD) (1).
Ta có \(\left\{ \begin{array}{l}I \in AN,AN \subset \left( {ABN} \right)\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (2).
Tương tự \(\left\{ \begin{array}{l}J \in MN,MN \subset \left( {ABN} \right)\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (3).
Từ (1), (2), (3) suy ra B, I, J cùng thuộc giao tuyến của hai mặt phẳng (ABN) và (SBD) nên ba điểm này thẳng hàng.
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
C
Kéo dài AD và BC. Gọi K là giao điểm của AD và BC.
Ta có S và K là hai điểm chung của hai mặt phẳng (SAD) và (SBC) nên giao tuyến của (SAD) và (SBC) là SK.
Lời giải
A
Xét DSFE có\(\frac{{SJ}}{{SF}} = \frac{{SI}}{{SE}} = \frac{2}{3}\) (do I, J là trọng tâm của DSAB, DSAD).
Suy ra IJ // EF (1).
Mà EF // BD Ì (SBD) (2).
Từ (1) và (2) suy ra IJ // (SBD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.