Câu hỏi:

18/06/2025 129 Lưu

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của BC, CD, SD. Gọi Q là giao điểm của SA với (MNP). Tính tỉ số \(\frac{{SQ}}{{SA}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

C (ảnh 1)

Trong (ABCD), gọi E = MN Ç AC.

Trong (SAC) vẽ EQ // SC với Q Î SA.

Có \(\left\{ \begin{array}{l}QE//PN\left( {//SE} \right)\\PN \subset \left( {MNP} \right)\\E \in MN \subset \left( {MNP} \right)\end{array} \right.\)Þ Q Î (MNP).

Þ Q = SA Ç (MNP).

Ta có MN là đường trung bình của DBCD nên MN // BD hay ME // BO.

Suy ra E là trung điểm của OC.

Khi đó \(\frac{{CE}}{{CO}} = \frac{1}{2} \Rightarrow \frac{{CE}}{{CA}} = \frac{1}{4}\).

Xét DSAC, ta có QE // SC nên \(\frac{{SQ}}{{SA}} = \frac{{CE}}{{CA}} = \frac{1}{4} = 0,25\).

Trả lời: 0,25.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

V (ảnh 1)

Xét DSFE có\(\frac{{SJ}}{{SF}} = \frac{{SI}}{{SE}} = \frac{2}{3}\) (do I, J là trọng tâm của DSAB, DSAD).

Suy ra IJ // EF (1).

Mà EF // BD Ì (SBD) (2).

Từ (1) và (2) suy ra IJ // (SBD).

Câu 2

Lời giải

A

Trong các hình dưới đây, hình nào biểu diễn hình hộp trong không gian?  	 (ảnh 1)

Hai mặt phẳng (SAB) và (MCD) lần lượt chứa hai đường thẳng song song AB, CD và MN là giao tuyến của chúng nên MN // CD.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP