Câu hỏi:

03/07/2025 117 Lưu

(1,0 điểm) Giải các hệ phương trình sau:

a) \[\left\{ \begin{array}{l}x - y = 16\\2x - 5y = - 28\end{array} \right.\];

b) \[\left\{ \begin{array}{l}5x + 4y = 18\,\,040\\3x - 2y = 2\,\,002\end{array} \right..\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Từ phương trình thứ nhất ta có \[x - y = 16\] suy ra \(x = 16 + y\). Thế vào phương trình thứ hai, ta được:

\[2\left( {16 + y} \right) - 5y = - 28\], tức là \[32 - 3y = - 28\], suy ra \[3y = 60\] hay \[y = 20\].

Từ đó \[x = 16 + 20 = 36.\]

Vậy hệ phương trình đã cho có nghiệm là \[\left( {36;20} \right).\]

b) Từ phương trình thứ nhất ta có \[5x + 4y = 18\,\,040\] suy ra \(x = 3\,\,608 - \frac{4}{5}y\). Thế vào phương trình thứ hai, ta được:

\[3\left( {3608 - \frac{4}{5}y} \right) - 2y = 2002\], tức là \[10824 - \frac{{22}}{5}y = 2002\], suy ra \[\frac{{22}}{5}y = 8822\] hay \[y = 2005.\]

Từ đó \[x = 3608 - \frac{4}{5}.2005 = 2004.\]

Vậy hệ phương trình đã cho có nghiệm là \[\left( {2004\,;2005} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \(\frac{{x - 2}}{{2017}} + \frac{{x - 3}}{{2018}} < \frac{{x - 4}}{{2019}} + \frac{{x - 5}}{{2020}}\)

\(\frac{{x - 2}}{{2017}} + \frac{{x - 3}}{{2018}} + 2 < \frac{{x - 4}}{{2019}} + \frac{{x - 5}}{{2020}} + 2\)

\(\left( {\frac{{x - 2}}{{2017}} + 1} \right) + \left( {\frac{{x - 3}}{{2018}} + 1} \right) < \left( {\frac{{x - 4}}{{2019}} + 1} \right) + \left( {\frac{{x - 5}}{{2020}} + 1} \right)\)

\(\frac{{x - 2015}}{{2017}} + \frac{{x - 2015}}{{2018}} < \frac{{x - 2015}}{{2019}} + \frac{{x - 2015}}{{2020}}\)

\(\frac{{x - 2015}}{{2017}} + \frac{{x - 2015}}{{2018}} - \frac{{x - 2015}}{{2019}} - \frac{{x - 2015}}{{2020}} < 0\)

\(\left( {x - 2015} \right)\left( {\frac{1}{{2017}} + \frac{1}{{2018}} - \frac{1}{{2019}} - \frac{1}{{2020}}} \right) < 0\)

Nhận thấy \(\frac{1}{{2017}} + \frac{1}{{2018}} - \frac{1}{{2019}} - \frac{1}{{2020}} > 0\).

Do đó, để thỏa mãn yêu cầu bài toán thì \(x - 2015 < 0\) suy ra \(x < 2015.\)

Vậy \(x < 2015.\)

Câu 2

A. \(\widehat B = 30^\circ .\)

B. \(\widehat B = 53^\circ 1'.\)

C. \(\widehat B = 35^\circ 1'.\)

D. \(\widehat B = 50^\circ .\)

Lời giải

Đáp án đúng là: B

Tam giác \(ABH\) vuông tại \(H\), ta có: \[\cos B = \frac{{BH}}{{AH}}\] hay \(\cos B = \frac{{1,5}}{{2,5}} = \frac{3}{5}\), suy ra \(\widehat B \approx 53^\circ 1'\).

Vậy chọn đáp án B.

Câu 5

A. \[\left\{ \begin{array}{l}3x + 2y = 1\\x + y = 0\end{array} \right.\].

B. \[\left\{ \begin{array}{l}3x + 2y = 1\\x - y = 0\end{array} \right.\].

C. \[\left\{ \begin{array}{l}3x - 2y = 1\\x + y = 0\end{array} \right.\].

D. \[\left\{ \begin{array}{l}3x - 2y = 1\\x - y = 0\end{array} \right..\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP