Câu hỏi:

13/07/2024 9,926 Lưu

Chứng minh rằng (5n + 2)2 – 4 chia hết cho 5 với mọi số nguyên n

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

(5n + 2)2 – 4

= (5n + 2)2 – 22

= (5n + 2 – 2)(5n + 2 + 2)

= 5n(5n + 4)

Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.

Vậy (5n + 2)2 – 4 luôn chia hết cho 5 với n ∈ Ζ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

x4 + 4

= (x2)2 + 22

= x4 + 2.x2.2 + 4 – 4x2

(Thêm bớt 2.x2.2 để có HĐT (1))

= (x2 + 2)2 – (2x)2

(Xuất hiện HĐT (3))

= (x2 + 2 – 2x)(x2 + 2 + 2x)

Lời giải

x3 – 2x2 + x

= x.x2 – x.2x + x (Xuất hiện nhân tử chung là x)

= x(x2 – 2x + 1) (Xuất hiện hằng đẳng thức (2))

= x(x – 1)2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP